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Fingerprint Pattern Studies
      
Fingerprint studies use rigorous statistical methods to compare spatial and temporal patterns of climate 
change in computer models and observations.

1. Both human and natural factors have affected Earth’s climate. Computer models are the only tools we 
have for estimating the likely climate response patterns (“fingerprints”) associated with different forc-
ing mechanisms. 

To date, most formal fingerprint studies have focused on a relatively small number of climate forcings. Our 
best scientific understanding is that:
•  Increases in well-mixed greenhouse gases (which are primarily due to fossil fuel burning) result in large-

scale warming of the Earth’s surface and troposphere, and cooling of the stratosphere. 
•  Human-induced changes in the atmospheric burdens of sulfate aerosol particles cause regional cooling 

of the surface and troposphere. 
•  Depletion of stratospheric ozone cools the lower stratosphere and upper troposphere.
•  Large volcanic eruptions cool the surface and troposphere (for 3 to 5 years) and warm the stratosphere 

(for 1 to 2 years).
•  Increases in solar irradiance warm globally throughout the atmospheric column (from the surface to 

the stratosphere).  

2. Results from many different fingerprint studies provide consistent evidence of a human influence on the 
three-dimensional structure of atmospheric temperature over the second half of the 20th century.

  
Robust results are: 
•  Detection of greenhouse-gas and sulfate aerosol signals in observed surface temperature records.
•  Detection of an ozone depletion signal in stratospheric temperatures. 
•  Detection of the combined effects of greenhouse gases, sulfate aerosols, and ozone in the vertical 

structure of atmospheric temperature changes (from the surface to the stratosphere).

3. Natural factors have influenced surface and atmospheric temperatures, but cannot fully explain their 
changes over the past 50 years.  

•  The multi-decadal climatic effects of volcanic eruptions and solar irradiance changes are identifiable in 
some fingerprint studies, but results are sensitive to analysis details.
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Trend Comparisons

Linear trend comparisons are less powerful than “fingerprinting” for studying cause-effect relationships, but when 
treated with caution can highlight important differences (and similarities) between models and observations.   

�. When run with natural and human-caused forcings, model global-mean temperature trends for individual atmo-
spheric layers are consistent with observations.

5. Comparing trend differences between the surface and the troposphere exposes potential discrepancies between 
models and observations in the tropics.

•  Differencing surface and tropospheric temperature time series (a simple measure of the temperature lapse rate) 
removes much of the common variability between these layers. This makes it easier to identify discrepancies 
between modeled and observed lapse-rate changes. 

•  For globally averaged temperatures, model-predicted trends in tropospheric lapse rates are consistent with 
observed results. 

•  In the tropics, most observational data sets show more warming at the surface than in the troposphere, while 
most model runs have larger warming aloft than at the surface.

Amplification of Surface Warming in the Troposphere

6. In the tropics, surface temperature changes are amplified in the free troposphere. Models and observations 
show similar amplification behavior for monthly and interannual temperature variations, but not for decadal 
temperature changes.

•  Tropospheric amplification of surface temperature anomalies is due to the release of latent heat by moist, rising 
air in regions experiencing convection.

•  Despite large inter-model differences in variability and forcings, the size of this amplification effect is remarkably 
similar in the models considered here, even across a range of timescales (from monthly to decadal).

•  On monthly and annual timescales, amplification is also a ubiquitous feature of observations, and is very similar 
to values obtained from models and basic theory.

•  For longer-timescale temperature changes over 1979 to 1999, only one of four observed upper-air data sets has 
larger tropical warming aloft than in the surface records. All model runs with surface warming over this period 
show amplified warming aloft. 

•  These results could arise due to errors common to all models; to significant non-climatic influences remaining 
within some or all of the observational data sets, leading to biased long-term trend estimates; or a combination 
of these factors. The new evidence in this Report (model-to-model consistency of amplification results, the 
large uncertainties in observed tropospheric temperature trends, and independent physical evidence supporting 
substantial tropospheric warming) favors the second explanation. 

•  A full resolution of this issue will require reducing the large observational uncertainties that currently exist.  These 
uncertainties make it difficult to determine whether models still have common, fundamental errors in their repre-
sentation of the vertical structure of atmospheric temperature change.

other Findings

7. It is important to account for both model and observational uncertainty in comparisons between modeled and 
observed temperature changes.

•  There are large “construction uncertainties” in the process of generating climate data records from raw ob-
servations. These uncertainties can critically influence the outcome of consistency tests between models and 
observations. 

 
8. Inclusion of spatially variable forcings in the most recent climate models does not fundamentally alter simulated 

lapse-rate changes at the largest spatial scales.
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CHAPTER 5: Recommendations

1. Separate the uncertainties in climate forcings from uncertainties in the climate 
response to forcings.

The simulations of 20th century (20CEN) climate analyzed here show climate responses 
that differ because of differences in:
•  Model physics and resolution;
•  The forcings incorporated in the 20CEN experiment;
•  The chosen forcing history, and the manner in which a specific forcing was applied.
•  Model initial conditions.

We consider it a priority to partition the uncertainties in climate forcings and model 
responses, and thus improve our ability to interpret differences between models and 
observations. This could be achieved by better coordination of experimental design, 
particularly for the 20CEN simulations that are most relevant for direct comparison 
with observations.

2. Quantify the contributions of changes in black carbon aerosols and land use/land cover 
to recent large-scale temperature changes.

We currently lack experiments in which the effects of black carbon aerosols and LULC 
are varied individually (while holding other forcings constant). Such “single forcing” runs 
will help to quantify the contributions of these forcings to global-scale changes in lapse 
rates. 

3. Explicitly consider model and observational uncertainty.

Efforts to evaluate model performance or identify human-induced climate change 
should always account for uncertainties in both observations and in model simulations 
of historical and future climate. This is particularly important for comparisons involv-
ing long-term changes in upper-air temperatures. It is here that current observational 
uncertainties are largest and require better quantification. 

�. Perform the “next generation” of detection and attribution studies.

Formal detection and attribution studies utilizing the new generation of model and ob-
servational data sets detailed herein should be undertaken as a matter of priority.

•  Changes in black carbon aerosols and land use/land cover (LULC) may have had 
significant influences on regional temperatures, but these influences have not been 
quantified in formal fingerprint studies.

•  These forcings were included for the first time in about half the global model simu-
lations considered here. Their incorporation did not significantly affect simulations 
of lapse-rate changes at very large spatial scales (global and tropical averages).
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1. �nTRodUCT�on 

A key scientific question addressed in this re-
port is whether the Earth’s surface has warmed 
more rapidly than the troposphere over the past 
2-3 decades (NRC, 2000). Chapter 1 noted that 
there are good physical reasons why we do not 
expect surface and tropospheric temperatures 
to evolve in unison at all places and on all time-
scales. Chapters 2, 3, and 4 summarized our 
current understanding of observed changes in 
surface and atmospheric temperatures. These 
chapters identified important differences be-
tween surface and tropospheric temperatures, 
some of which may be due to remaining prob-
lems with the observational data, and some of 
which are likely to be real. 

In Chapter 5, we seek to explain and reconcile 
the apparently disparate estimates of observed 

changes in surface and tropospheric tem-
peratures. We make extensive use of computer 
models of the climate system. In the real world, 
multiple “climate forcings” vary simultaneous-
ly, and it is difficult to identify and separate the 
climate effects of individual factors. Further-
more, the experiment that we are performing 
with the Earth’s climate system lacks a suitable 
control – we do not have a convenient “parallel 
Earth” on which there are no human-induced 
changes in greenhouse gases, aerosols, or other 
climate forcings. Climate models can be used 
to perform such controlled experiments, or to 
simulate the response to changes in a single 
forcing or combination of forcings, and thus 
have real advantages for studying cause-ef-
fect relationships. However, models also have 
systematic errors that can diminish their useful-
ness as a tool for interpretation of observations 
(Gates et al., 1999; McAvaney et al., 2001).

BoX 5.1:   Climate Models

Climate models provide us with estimates of how the real world’s climate system behaves and is likely to respond 
to changing natural and human-caused forcings. Because of limitations in our physical understanding and com-
putational capabilities, models are simplified and idealized representations of a very complex reality.  The most 
sophisticated climate models are direct descendants of the computer models used for weather forecasting.  While 
weather forecast models seek to predict the specific timing of weather events over a period of days to several 
weeks, climate models attempt to simulate future changes in the average distribution of weather events. 

Because the climate system is chaotic, fully coupled models of the atmosphere and ocean cannot simulate exactly 
the same sequence of individual weather events that occurred in the real world (see Section 2).  Such models can, 
however, capture many of the statistical characteristics of observed weather and climate variability, on timescales 
of days to decades.  Many models have demonstrated skill in their portrayal of major modes of observed climate 
variability, such as the North Atlantic Oscillation (Hurrell et al., 2003), the El Niño/Southern Oscillation (ENSO; 
AchutaRao and Sperber, 2006) or the Atlantic Multidecadal Oscillation (Knight et al., 2005).  This variability con-
tributes to the background “noise” against which any signal of human effects on climate must be detecteda. (Box 
5.5). 

Simulations of 21st century climate are typically based on “scenarios” of future emissions of GHGs, aerosols and 
aerosol precursors, which in turn derive from scenarios of population changes, economic growth, energy usage, 
developments in energy production technology, etc.  Climate models are also used to “hindcast” the climate 
changes that we have observed over the 20th century.  When run in “hindcast” mode, a climate model is not con-
strained by actual weather observations from satellites or radiosondes.  Instead, it is driven by our best estimates 
of changes in some (but probably not all) of the major forcings, such as GHG concentrations, the Sun’s energy 
output, and the amount of volcanic dust in the atmosphere.  In hindcast experiments, a climate model is free to 
simulate the full four-dimensional (latitude, longitude, height/depth and time) distributions of temperature, mois-
ture, etc.  Comparing the results of such an experiment with long observational records constitutes a valuable test 
of model performance. 

A more complete assessment of climate models and their ability to represent many different aspects of the climate 
system will be covered in CCSP Synthesis and Assessment Product 3.1:  “Climate Models:  An Assessment of 
Strengths and Limitations for User Applications.” 

a. There is some evidence that human-induced climate change may modulate the statistical behavior of existing modes of  
climate variability (Hasselmann, 1999).

Climate models can 
be used to simulate 
the response 
to changes in a 
single forcing or 
a combination of 
forcings, and thus 
have real advantages 
for studying cause-
effect relationships. 
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We evaluate published research that has made 
rigorous quantitative comparisons of modeled 
and observed temperature changes, primarily 
over the satellite and radiosonde eras. Some 
new model experiments (performed in sup-
port of the IPCC Fourth Assessment Report) 
involve simultaneous changes in a wide range 
of natural and human-induced climate forcings. 
These experiments are highly relevant for direct 
comparison with satellite-, radiosonde-, and 
surface-based temperature observations. We 
review their key results here.

2. ModEL S�MULAT�onS 
oF RECEnT TEMPERATURE 
CHAnGE

Many different types of computer model 
are used for studying climate change issues 
(Meehl, 1984; Trenberth, 1992; see Box 5.1). 
Models span a large range of complexity, from 
the one- or two-dimensional energy-balance 
models (EBMs) through Earth system Mod-
els of Intermediate Complexity (EMICs) to 
full three-dimensional atmospheric General 
Circulation Models (AGCMs) and coupled at-
mosphere-ocean GCMs (CGCMs). Each type 
has advantages and disadvantages for specific 
applications. The more complex AGCMs and 
CGCMs are most appropriate for understanding 
problems related to the atmosphere’s vertical 
temperature structure, since they explicitly 
resolve that structure, and incorporate many of 
the physical processes (e.g., convection, inter-
actions between clouds and radiation) thought 
to be important in maintaining atmospheric 
temperature profiles. They are also capable of 
representing the horizontal and vertical struc-
ture of unevenly distributed climate forcings 
that may contribute to differential warming of 
the surface and troposphere. Examples include 
volcanic aerosols (Robock, 2000) or the sulfate 
and soot aerosols arising from fossil fuel or bio-
mass burning (Penner et al., 2001; Ramaswamy 
et al., 2001a,b).

AGCM experiments typically rely on an atmo-
spheric model driven by observed time-varying 
changes in sea-surface temperatures (SSTs) and 
sea-ice coverage. This is a standard reference 
experiment that many AGCMs have performed 
as part of the Atmospheric Model Intercompari-
son Project (“AMIP”; Gates et al., 1999). The 

AMIP-style experiments discussed here also 
include specified changes in a variety of natural 
and human-caused forcing factors (Hansen et 
al., 1997, 2002; Folland et al., 1998; Tett and 
Thorne, 2004).

In both observations and climate models, 
variations in the El Niño-Southern Oscillation 
(ENSO) have pronounced effects on surface 
and tropospheric temperatures (Yulaeva and 
Wallace, 1994; Wigley, 2000; Santer et al., 
2001; Hegerl and Wallace, 2002; Hurrell et al., 
2003). When run in an AMIP configuration, an 
atmospheric model “sees” the same changes in 
ocean surface temperature that the real world’s 
atmosphere experienced. The time evolution of 
ENSO effects on atmospheric temperature is 
therefore very similar in the model and observa-
tions. This facilitates the direct comparison of 
modeled and observed temperature changes1. 
Furthermore, AMIP experiments reduce 
climate noise by focusing on the random vari-
ability arising from the atmosphere rather than 
on the variability of the coupled atmosphere-
ocean system (which is larger in amplitude). 
This “noise reduction” aspect of AMIP runs 
has been exploited in efforts to identify human 
effects on year-to-year changes in atmospheric 
temperatures (Folland et al., 1998; Sexton et 
al., 2001) and volcanic influences on surface air 
temperature (Mao and Robock, 1998).

One disadvantage of the AMIP experimental 
set-up is that significant errors in one or more 
of the applied forcing factors (or omission of 
key forcings) are not “felt” by the prescribed 
SSTs. Such errors are more obvious in a CGCM 
experiment, where the ocean surface is free to 
respond to imposed forcings. The lack of an 
ocean response, combined with the masking 
effects of natural variability, make it difficult 
to use an AMIP-style experiment to estimate 
the slow response of the climate system to an 
imposed forcing change2. CGCM experiments 

1  This does not mean, however, that the atmospheric 
model will necessarily capture the correct amplitude 
and horizontal and vertical structure of the tropo-
spheric temperature response to the specified SST 
and sea-ice changes. Even with the specification of 
observed ocean boundary conditions, the time evolu-
tion of modes of variability that are forced by both the 
ocean and the atmosphere (such as the North Atlantic 
Oscillation; see Rodwell et al., 1999) will not be the 
same in the model and in the real world (except by 
chance).

2  Volcanic forcing provides an example of the signal 

Climate models 
are also used to 

“hindcast” the 
climate changes that 

we have observed 
over the 20th 

century. Comparing 
the results of such 

an experiment with 
long observational 

records constitutes 
a valuable test of 

model performance.
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are more useful for this specific purpose (see 
Chapter 1, Figure 1.3).

The CGCM experiments of interest here involve 
a model that has been “spun-up” until it reaches 
some quasi-steady climate state3. The CGCM 
is then run with estimates of how a variety of 
natural and human-caused climate forcings 
have changed over the 20th century. We refer 
to these subsequently as “20CEN” experiments. 
Since the true state of the climate system is 
never fully known, the same forcing changes 
are applied n times,4 each time starting from 
a slightly different initial climate state. This 
procedure yields n different realizations of cli-
mate change. All of these realizations contain 
some underlying “signal” (the climate response 
to the imposed forcing changes) upon which 
are superimposed n different manifestations 
of “noise” (natural internal climate variability). 
Taking averages over these n realizations yields 
less noisy estimates of the signal (Wigley et 
al., 2005a). 

In a CGCM, ocean temperatures are fully pre-
dicted rather than prescribed. This means that 
even a (hypothetical) CGCM which perfectly 
captured all important aspects of ENSO phys-
ics would not have the same timing of El Niño 
and La Niña events as the real world (except by 
chance). The fact that ENSO variability – and 
its effects on surface and atmospheric tempera-
tures – does not “line up in time” in observa-
tions and CGCM experiments hampers direct 
comparisons between the two5. This problem 

estimation problem. The aerosols injected into the 
stratosphere during a massive volcanic eruption are 
typically removed within 2-3 years (Sato et al., 1993; 
Hansen et al., 2002; Ammann et al., 2003). Because 
the large thermal inertia of the oceans causes a lag 
in response to this forcing, the cooling effect of the 
aerosols on the troposphere and surface persists for 
much longer than 2-3 years (Santer et al., 2001; Free 
and Angell, 2002; Wigley et al., 2005a). In the real 
world and in “AMIP-style” experiments, this slow, 
volcanically induced cooling of the troposphere and 
surface is sometimes masked by the warming effects 
of El Niño events (Christy and McNider, 1994; Wigley, 
2000; Santer et al., 2001), thus hampering volcanic 
signal estimation. 

3  There are a variety of different spin-up strategies.
4  In most of the experiments reported on here, n is 

between 3 and 5.
5  If n is large enough to adequately sample the 

(simulated) effects of natural variability on surface 
and tropospheric temperatures, it is not necessarily 
a disadvantage that the simulated and observed vari-
ability does not line up in time. In fact, this type of 

can be ameliorated by statistical removal of 
ENSO effects (Santer et al., 2001; Hegerl and 
Wallace, 2002; Wigley et al., 2005a)6. 

The bottom line is that AMIP-style experi-
ments and CGCM runs are both useful tools 
for exploring the possible causes of differential 
warming.  We note that even if these two experi-
mental configurations employ the same atmo-
spheric model and the same climate forcings, 
they can yield noticeably different simulations 
of changes in atmospheric temperature profiles. 
These differences arise for a variety of reasons, 
such as AGCM-versus-CGCM differences in 
sea-ice coverage, SST distributions, and cloud 
feedbacks, and hence in climate sensitivity (Sun 
and Hansen, 2003)7.

Most models undergo some adjustment of 
poorly-known parameters which directly affect 
key physical processes, such as convection and 
rainfall. Parameters are varied within plausible 
ranges, which are generally derived from direct 
observations. The aim of this procedure is to 
reduce the size of systematic model errors and 
improve simulations of present-day climate. 
Adjustment of uncertain model parameters 
is not performed over the course of a 20CEN 
experiment. 

Several groups are now beginning to explore 
model parameter space, and are investigating 
the possible impact of parameter uncertainties 
on simulations of mean present-day climate and 
future climate change by running “perturbed 
physics” ensembles (Allen, 1999; Forest et 
al., 2002; Murphy et al., 2004; Stainforth et 
al., 2005). Such work will help to quantify 
one component of model uncertainty. Another 
component of model uncertainty arises from 
differences in the basic structure of models8. 

experimental set-up allows one to determine whether 
the single realization of the observations is contained 
within the “envelope” of possible climate solutions 
that the CGCM simulates.

6  Residual effects of these modes of variability will 
remain in the data.

7  See, for example, the Ocean A and Ocean E results 
in Figure 3 of Sun and Hansen (2003).

8  The computer models constructed by different 
research groups can have quite different “structures” 
in terms of their horizontal and vertical resolution, 
atmospheric dynamics (so-called “dynamical cores”), 
numerical implementation (e.g., spectral versus grid-
point), and physical parameterizations. They do, 
however, share many common assumptions.

AMIP-style 
experiments and 
CGCM runs are 
both useful tools 
for exploring the 
possible causes of 
differential warming.



9� 95

Temperature Trends in the Lower Atmosphere - Understanding and Reconciling Differences

9� 95

Section 5 considers results from a range of 
state-of-the-art CGCMs, and thus samples some 
of the “structural uncertainty” in model simula-
tions of 20th century climate change (Table 5.1). 
A further component of the spread in simula-
tions of 20th century climate is introduced by 
uncertainties in the climate forcings with which 
models are run (Table 5.2). These are discussed 
in the following Section. 

3. FoRC�nGS �n S�MULAT�onS 
oF RECEnT CL�MATE CHAnGE

In an ideal world, there would be reliable quan-
titative estimates of all climate forcings – both 
natural and human-induced – that have made 
significant contributions to surface and tropo-
spheric temperature changes. We would have 
detailed knowledge of how these forcings had 
changed over space and time. Finally, we would 
have used standard sets of forcings to perform 
climate-change experiments with a whole suite 
of numerical models, thus isolating uncertain-
ties arising from structural differences in the 
models themselves (see Box 5.2).

Unfortunately, this ideal situation does not 
exist. As part of the IPCC Third Assessment 
Report, Ramaswamy et al. (2001b) assigned 
subjective confidence levels to our current 
“level of scientific understanding” (LOSU) of 
the changes in a dozen different climate forc-
ings. Only in the case of well-mixed greenhouse 
gases (“GHGs”; carbon dioxide [CO2], methane, 
nitrous oxide, and halocarbons) was the LOSU 
characterizedBas “high.” The LOSU of changes 

BoX 5.2:  Uncertainties in Simulated Temperature Changes

In discussing the major sources of uncertainty in observational estimates of temperature change, Chapter 2 par-
titioned uncertainties into three distinct categories: “structural,” “parametric,” and “statistical.” Uncertainties in 
simulated temperature changes fall into similar categories. In the modeling context, “structural” uncertainties can 
be thought of as the uncertainties resulting from the choice of a particular climate model, model configuration 
(Section 2), or forcing data set (Section 3). 

Within a given model, there are small-scale physical processes (such as convection, cloud formation, precipitation, 
etc.) that cannot be simulated explicitly. Instead, so-called “parameterizations” represent the large-scale effects of 
these unresolved processes. Each of these processes has uncertainties in the values of one or more key parameters.a 
Varying these parameters within plausible ranges introduces “parametric” uncertainty in climate change simulations 
(Allen, 1999; Forest et al., 2002; Murphy et al., 2004). Finally (analogous to the observational case), there is statistical 
uncertainty that arises from the unpredictable “noise” of internal climate variability, from the choice of a particular 
statistical metric to describe climate change, or from the application of a selected metric to noisy data.

a.  Note that some of these parameters influence not only the climate response, but also the portrayal of the forcing itself. Examples 
include parameters related to the size of sulfate aerosols, and how aerosol particles scatter incoming sunlight.

in stratospheric and tropospheric ozone was 
judged to be “medium.” For all other forcings 
(various aerosols, mineral dust, land use-in-
duced albedo changes, solar, etc.), the LOSU 
was estimated to be “low” or “very low” (see 
Chapter 1, Table 1.1 and Section 1.2)9.

In selecting the forcings for simulating the cli-
mate of the 20th century, there are at least three 
strategies that modeling groups can adopt. The 
first strategy is to incorporate only those forc-
ings whose changes and effects are thought to 
be better understood, and for which time- and 
space-resolved data sets suitable for performing 
20CEN experiments are readily available. The 
second strategy is to include a large number 
of different forcings, even those for which the 
LOSU is “very low.” A third strategy is to vary 
the size of poorly known 20CEN forcings. This 
yields a range of simulated climate responses, 
which are then used to estimate the levels of the 
forcings that are consistent with observations 
(e.g., Forest et al., 2002).  

The pragmatic focus of Chapter 5 is on climate 
forcings that have been incorporated in many 
CGCM simulations of 20th century climate. 
The primary forcings that we consider are 
changes in well-mixed GHGs, the direct effects 
of sulfate aerosol particles, tropospheric and 
stratospheric ozone, volcanic aerosols, and solar 

9  We note that there is no direct relationship between 
the LOSU of a given forcing and the contribution of 
that forcing to 20th century climate change. Forcings 
with “low” or “very low” LOSU may have had sig-
nificant climatic impacts at regional and even global 
scales.
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irradiance. These are forcings whose effects 
on surface and atmospheric temperatures have 
been quantified in rigorous fingerprint studies 
(see Section 4.4). This does not diminish the 
importance of other climate forcings, whose 
global-scale contributions to “differential 
warming” have not been reliably quantified 
to date. 

Examples of these “other forcings” include 
carbon-containing aerosols produced during 
fossil fuel or biomass combustion, human-in-
duced changes in land surface properties, and 
the indirect effects of tropospheric aerosols on 
cloud properties. There is emerging scientific 
evidence that such spatially variable forcings 
may have had important impacts on regional 
and even on global climate (NRC, 2005). Some 
of this evidence is summarized in Box 5.3 and 
Box 5.4 for the specific cases of carbonaceous 
aerosols and land use change. These and other 
previously neglected forcings have been includ-

ed in many of the new CGCM 
simulations of 20th century 
climate described in Section 5 
(see Tables 5.1 and 5.2).

Clearly, we will never have 
complete and reliable infor-
mation on all forcings that are 
thought to have inf luenced 
climate over the late 20th 
century. A key question is 
whether those forcings most 
important for understanding 
the differential warming prob-
lem are reliably represented. 
This is currently difficult to 
answer. What we can say, 
with some certainty, is that 
the expected atmospheric tem-
perature signal due to forcing 
by well-mixed GHGs alone is 
distinctly different from the 
signal due to the combined 
effects of multiple natural and 
human forcing factors (Chap-
ter 1; Santer et al., 1996a; Tett 
et al., 1996; Hansen et al., 
1997, 2002; Bengtsson et al., 
1999; Santer et al., 2003a). 

This is illust rated by the 
20CEN and “single forcing” experiments per-
formed with the Parallel Climate Model (PCM; 
Washington et al., 2000). In PCM, changes in 
the vertical profile of atmospheric tempera-
ture over 1979 to 1999 are primarily forced by 
changes in well-mixed GHGs, ozone, and vol-
canic aerosols (Figure 5.1). Changes in solar 
irradiance and the scattering effects of sulfate 
aerosols are of secondary importance over this 
period. Even without performing formal sta-
tistical tests, it is visually obvious from Figure 
5.1 that radiosonde-based estimates of observed 
stratospheric and tropospheric temperature 
changes are in better agreement with the PCM 
20CEN experiment than with the PCM “GHG 
only” run. 

This illustrates the need for caution in com-
parisons of modeled and observed atmospheric 
temperature change. The differences evident 
in such comparisons have multiple interpreta-
tions. They may be due to real errors in the 

BoX 5.3:   Example of a Spatially-Heterogeneous  
Forcing: Black Carbon Aerosols

Carbon-containing aerosols (also known as “carbonaceous” aerosols) exist in a variety 
of chemical forms (Penner et al., 2001). Two main classes of carbonaceous aerosol are 
generally distinguished: “black carbon” (BC) and “organic carbon” (OC). Both types 
of aerosol are emitted during fossil fuel and biomass burning. Most previous modeling 
work has focused on BC aerosols rather than OC aerosols. Some of the new model 
experiments described in Section 5 have now incorporated both types of aerosol in 
CGCM simulations of 20th century climate changes (see Tables 5.2 and 5.3).

Black carbon aerosols absorb sunlight and augment the GHG-induced warming of 
the troposphere (Hansen et al., 2000; Satheesh and Ramanathan, 2000; Penner et al., 
2001; Hansen, 2002; Penner et al., 2003)a.. Their effects on atmospheric temperature 
profiles are complex, and depend on such factors as the chemical composition, particle 
size, and height distribution of the aerosols (e.g., Penner et al., 2003). 

Menon et al. (2002) showed that the inclusion of fossil fuel and biomass aerosols over 
China and Indiab. directly affected simulated vertical temperature profiles by heating 
the lower troposphere and cooling the surface. In turn, this change in atmospheric 
heating influenced regional circulation patterns and the hydrological cycle. Krishnan 
and Ramanathan (2002) found that an increase in black carbon aerosols has reduced 
the surface solar insolation (exposure to sunlight) over the Indian subcontinent. 
Model experiments performed by Penner et al. (2003) suggest that the net effect of 
carbonaceous aerosols on global-scale surface temperature changes depends criti-
cally on how aerosols affect the vertical distribution of clouds. On regional scales, the 
surface temperature effects of these aerosols are complex, and vary in sign (Penner 
et al., 2006). 

a.  Note that soot particles are sometimes transported long distances by winds, and can also have 
a “far field” effect on climate by reducing the reflectivity of snow in areas remote from pollution 
sources (Hansen and Nazarenko, 2003; Jacobson, 2004).

b.   During winter and spring, black carbon aerosols contribute to a persistent haze over large areas 
of Southern Asian and the Northern Indian Ocean (Ramanathan et al., 2001).
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models,10 errors in the forcings used to drive the 
models, the neglect of important forcings, and 
residual inhomogeneities in the observations 
themselves. They may also be due to different 
manifestations of natural variability noise in the 
observations and a given CGCM realization. 
All of these factors can be important in model 
evaluation work. 

�. PUBL�SHEd CoMPAR�SonS 
oF ModELEd And oBSERVEd 
TEMPERATURE CHAnGES

A number of observational and modeling stud-
ies have attempted to shed light on the possible 
causes of “differential warming”11. We have 

10 These may lie in the physics, parameterizations, 
inadequate horizontal or vertical resolution, etc.

11 We do not discuss studies which provide empirical 
estimates of “equilibrium climate sensitivity” – the 
steady-state warming of the Earth’s surface that would 
eventually be reached after the climate system equili-
brated to a doubling of pre-industrial CO2 levels. This 
is often referred to as ∆T2xCO2.  Estimates of ∆T2xCO2 
have been obtained by studying Earth’s temperature 
response to “fast,” “intermediate,” and “slow” forcing 
of the climate system. Examples include the “fast” 
(<10-year) response of surface and tropospheric 
temperatures to massive volcanic eruptions (Hansen 
et al., 1993; Lindzen and Giannitsis, 1998; Douglass 
and Knox, 2005; Wigley et al., 2005a,b; Robock, 
2005); the “intermediate” (100- to 150-year) response 
of surface temperatures to natural and human-caused 
forcing changes over the 19th and 20th centuries 
(Andronova and Schlesinger, 2001; Forest et al., 2002; 
Gregory et al., 2002; Harvey and Kaufmann, 2002) or 

attempted to organize the discussion of results 
so that investigations with similar analysis 
methods are grouped together12. Our discussion 
proceeds from simple to more complex and 
statistically rigorous analyses.

�.1 Regression Studies Using  
observed Global-mean 
Temperature data
One class of study that has attempted to address 
the causes of recent tropospheric temperature 
change relies on global-mean observational data 
only (Jones, 1994; Christy and McNider, 1994; 
Michaels and Knappenberger, 2000; Douglass 
and Clader, 2002). Such work uses a multiple 
regression model to quantify the statistical rela-
tionships between various “predictor variables” 
(typically time series of ENSO variability, 

to solar and volcanic forcing changes over the past 1-2 
millennia (Crowley, 2000), and the “slow” (100,000-
year) response of Earth’s temperature to orbital 
changes between glacial and interglacial conditions 
(Hoffert and Covey, 1992; Hansen et al., 1993). These 
investigations are not directly relevant to elucidation 
of the causes of changes in the vertical structure of 
atmospheric temperatures, which is the focus of this 
Chapter.

12 It is useful to mention one technical issue relevant 
to model-data comparisons. As noted in Chapter 2, 
the satellite-based Microwave Sounding Unit (MSU) 
monitors the temperature of very broad atmospheric 
layers. To facilitate comparisons with observed MSU 
data sets, many of the studies reported on here cal-
culate “synthetic” MSU temperatures from climate 
model experiments. Technical aspects of these cal-
culations are discussed in Chapter 2, Box 2.1. 

BoX 5.�:   Example of a Spatially-Heterogeneous  
Forcing: Land Use Change
 
Humans have transformed the surface of the planet through such activities as conversion of forest to cropland, 
urbanization, irrigation, and large water diversion projects (see Chapter 4). These changes can affect a variety of 
physical properties of the land surface, such as the albedo (reflectivity), the release of water by plants (transpira-
tion), the moisture-holding capacity of soil, and the surface “roughness.” Alterations in these physical properties 
may in turn affect runoff, heat and moisture exchanges between the land surface and atmospheric boundary layer, 
wind patterns, and even rainfall (e.g., Pitman et al., 2004). Depending on the nature of the change, either warming 
or cooling of the land surface may occur (Myhre and Myhre, 2003).  

At the regional level, modeling studies of the Florida peninsula (Marshall et al., 2004) and southwest Western Australia 
(Pitman et al., 2004) have linked regional-scale changes in atmospheric circulation and rainfall to human transformation 
of the natural vegetation. Modeling work focusing on North America suggests that the conversion of natural forest 
and grassland to agricultural production has led to a cooling in summertime (Oleson et al., 2004). The global-scale 
signal of land use/land cover (LULC) changes from pre-industrial times to the present is estimated to be a small net 
cooling of surface temperature (Matthews et al., 2003, 2004; Brovkin et al., 2004; Hansen et al., 2005a; Feddema et 
al., 2005). Larger regional trends of either sign are likely to be evident (e.g., Hansen et al., 2005a)a..

a.  Larger regional trends do not necessarily translate to enhanced detectability. Although the signals of LULC and other spatially-
heterogeneous forcings are likely to be larger regionally than globally, the “noise” of natural climate variability is also larger at smaller 
spatial scales. It is not obvious a priori, therefore, how signal-to-noise relationships (and detectability of a given forcing’s climate effects) 
behave as one moves from global to continental to regional scales. 
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volcanic aerosol loadings, and solar irradiance) 
and a single “predictand” (typically T2LT). The 
aim is to remove the effects of the selected 
predictors on tropospheric temperature, and to 
estimate the residual trend that may arise from 
human-induced forcings. The quoted values for 
this residual trend in T2LT range from 0.04 to 
0.09ºC/decade13. 

These studies often make the unrealistic as-
sumption that the uncertainties inherent in 
such statistical signal separation exercises are 
very small. They do not explore the sensitiv-
ity of regression results to uncertainties in the 
predictor variables or the observational record, 
and generally use solar and volcanic forcings 

13 The studies by Jones (1994) and Christy and 
McNider (1994) remove volcano and ENSO effects 
from T2LT, and estimate residual trends of 0.093 and 
0.090ºC/decade over 1979 to 1993. A similar inves-
tigation by Michaels and Knappenberger (2000) ob-
tained a residual trend of 0.041ºC/decade over 1979 to 
1999. The error bars on these residual trend estimates 
are either not given, or claimed to be very small (e.g., 
± 0.005ºC/decade in Christy and McNider). A fourth 
study removed combined ENSO, volcano, and solar 
effects from T2LT, and estimated a residual trend of 
0.065 ± 0.012ºC/decade over 1979 to 2000 (Douglass 
and Clader, 2002).

as predictors rather than the climate responses 
to those forcings. Distinctions between forc-
ing and response are important (Wigley et 
al., 2005a). Accounting for uncertainties in 
predictor variables (and use of responses rather 
than forcings as predictors) expands the range 
of uncertainties in estimates of residual T2LT 
trends (Santer et al., 2001)14.

Regression methods have also been used to esti-
mate the net effects of ENSO and volcanoes on 
trends in global-mean surface and tropospheric 
temperatures. For T2LT, both Jones (1994) and 
Christy and McNider (1994) found that ENSO 
effects induced a small net warming of 0.03 to 
0.05ºC/decade over 1979 to 1993, while volca-
noes caused a cooling of 0.18ºC/decade over 
the same period. Michaels and Knappenberger 
(2000) also reported a relatively small ENSO 
influence on T2LT trends15. Santer et al. (2001) 
noted that over 1979 to 1997, volcanoes had 
likely cooled the troposphere by more than 
the surface. Removing the combined volcano 
and ENSO effects from surface and UAH T2LT 
data helped to explain some of the observed 
differential warming: the “raw” TS-minus-
T2LT trend over 1979 to 1997 decreased from 
roughly 0.15ºC/decade to 0.05-0.13ºC/decade.16   
Removal of volcano and ENSO inf luences 
also brought observed lapse rate trends closer 
to model results, but could not fully reconcile 
modeled and observed lapse rate trends17.

14 Santer et al. (2001) obtain residual T2LT trends 
ranging from 0.06 to 0.16ºC/decade over 1979 to 
1999. Their regression model is iterative, and involves 
removal of ENSO and volcano effects only.

15 The ENSO components of their T2LT trends were 
0.04ºC/decade over 1979 to 1998 and 0.01ºC/decade 
over 1979 to 1999. This difference in the net ENSO 
influence on T2LT (with the addition of only a single 
year of record) arises from the El Niño event in 
1997/98, and illustrates the sensitivity of this kind of 
analysis to so-called “end effects.”

16 The latter results were obtained with the HadCRUTv 
surface data (Jones et al., 2001) and version d03 of 
the UAH T2LT data. The range of residual lapse-rate 
trends arises from parametric uncertainty, i.e., from 
the different choices of ENSO predictor variables and 
volcano parameters.

17 Santer et al. (2001) analyzed model experiments per-
formed with the ECHAM4/OPYC model developed at 
the Max-Planck Institute for Meteorology in Hamburg 
(Roeckner et al., 1999). The experiments included 
forcing by well-mixed greenhouse gases, direct and 
indirect sulfate aerosol effects, tropospheric and 
stratospheric ozone, and volcanic aerosols (Pinatubo 
only).

Figure 5.1: Vertical profiles of global-mean atmospheric temperature change 
over 1979 to 1999. Surface temperature changes are also shown. Results are from 
two different radiosonde data sets (HadAT2 and RATPAC; see Chapter 3) and 
from single forcing and combined forcing experiments performed with the Paral-
lel Climate Model (PCM; Washington et al., 2000). PCM results for each forcing 
experiment are averages over four different realizations of that experiment. All 
trends were calculated with monthly mean anomaly data.
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�.2 Regression Studies 
Using Spatially Resolved 
Temperature data
Other regression studies have attempted to 
remove natural variability inf luences using 
spatially resolved temperature data. Regression 
is performed “locally” at individual grid-points 
and/or atmospheric levels. To obtain a clearer 
picture of volcanic effects on atmospheric tem-
peratures, Free and Angell (2002) removed the 
effects of variability in ENSO and the Quasi-
Biennial Oscillation (QBO) from Hadley Centre 
radiosonde data18. Their work clearly shows that 
the cooling effect of massive volcanic eruptions 
has been larger in the upper troposphere than in 
the lower troposphere. The implication is that 
volcanic effects probably contribute to slow 
changes in observed lapse rates. 

Hegerl and Wallace (2002) used regression 
methods to identify and remove different 
components of natural climate variability from 
gridded fields of surface temperature data, 
UAH T2LT, and “synthetic” T2LT calculated from 
radiosonde data. They focused on the variability 
associated with ENSO and the so-called “cold 
ocean warm land” (COWL) pattern (Wallace et 
al., 1995). While ENSO and COWL variability 
made significant contributions to the month-to-
month and year-to-year variability of tempera-
ture differences between the surface and T2LT, 
their analysis indicated that it had very little im-
pact on decadal fluctuations in lapse rate. The 
authors concluded that natural variability alone 
was unlikely to explain these slow lapse-rate 
changes. However, the removal of ENSO and 
COWL effects more clearly revealed a volcanic 
contribution, consistent with the findings of 
Santer et al. (2001) and Free and Angell (2002). 
A climate model control run (with no changes in 
forcings) and a 20CEN experiment were unable 
to adequately reproduce the observed decadal 
changes in lapse rate19.
 

18 The HadRT2.1 data set of Parker et al. (1997). Like 
Santer et al. (2001), Free and Angell (2002) also found 
some sensitivity of the estimated volcanic signals to 
“parametric” uncertainty.

19 The model was the ECHAM4/OPYC CGCM used 
by Bengtsson et al. (1999). The 20CEN experiment 
analyzed by Hegerl and Wallace (2002) involved 
combined changes in well-mixed greenhouse gases, 
the direct and indirect effects of sulfate aerosols, and 
tropospheric ozone. Forcing by volcanoes and strato-
spheric ozone depletion was not included.

�.3 other Studies of Global and 
Tropical Lapse-rate Trends
Several studies have investigated lapse-rate 
trends without attempting to remove volcano 
effects or natural climate noise. Brown et al. 
(2000) used surface, radiosonde, and satellite 
data to identify slow, tropic-wide changes in 
the lower tropospheric lapse rate20. In their 
analysis, the surface warmed relative to the 
troposphere between the early 1960s and mid-
1970s and after the early 1990s. Between these 
two periods, the tropical troposphere warmed 
relative to the surface. The spatial coherence 
of these variations (and independent evidence 
of concurrent variations in the tropical general 
circulation) led Brown et al. (2000) to conclude 
that tropical lapse rate changes were unlikely 
to be an artifact of residual errors in the ob-
servations.

Very similar decadal changes in lower tropo-
spheric lapse rate were reported by Gaffen et 
al. (2000)21. Their study analyzed radiosonde-
derived temperature and lapse rate changes over 
two periods: 1960 to 1997 and 1979 to 1997. 
Tropical lapse rates decreased over the longer 
period22 and increased over the satellite era23. 
To evaluate whether natural climate variability 
could explain these slow variations, Gaffen et 
al. (2000) computed lapse rates from the control 
runs performed with three different CGCMs. 
Each control run was 300 years in length. These 
long runs provided estimates of the “sampling 
variability” of modeled lapse rate changes on 
timescales relevant to the two observational 
periods (38 and 19 years)24. Model-based esti-

20 The Brown et al. (2000) study employed UKMO 
surface data (HadCRUT), version d of the UAH T2LT, 
and an early version of the Hadley Centre radiosonde 
data set (HadRT2.0) that was uncorrected for instru-
mental biases.

21 Gaffen et al. (2000) used a different radiosonde data 
set from that employed by Brown et al. (2000). The 
two groups also analyzed different surface tempera-
ture data sets.

22 Corresponding to a tendency towards a more stable 
atmosphere.

23 These lapse-rate changes were accompanied by 
increases and decreases in tropical freezing heights 
(which were inferred from the same radiosonde 
data).

24 Each control run was used to generate distributions 
of 38-year and 19-year lapse rate trends. For example, 
a 300-year control run can be split up into 15 different 
“segments” that are each of length 19 years (assuming 
there is no overlap between segments). From these 
segments, one obtains 15 different estimates of how 
the lapse rate might vary in the absence of any forcing 
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mates of natural climate variability could not 
adequately explain the observed tropical lapse 
rate changes over 1979 to 1997. Similar con-
clusions were reached by Hansen et al. (1995) 
and Santer et al. (2000). Including natural and 
anthropogenic forcings in the latter study nar-
rowed the gap between modeled and observed 
estimates of recent lapse-rate changes, although 
a significant discrepancy between the two still 
remained.

It should be emphasized that all of the studies 
reported on to date in Section 4 relied on satel-
lite data from one group only (UAH), on early 
versions of the radiosonde data25, and on experi-
ments performed with earlier model “vintages.” 
It is likely, therefore, that this work may have 
underestimated the structural uncertainties in 
observed and simulated estimates of lapse rate 
changes. We will consider in Section 5 whether 
modeled and observed lapse rate changes can 
be better reconciled by the availability of more 
recent 20CEN runs and more comprehensive 
estimates of structural uncertainties in obser-
vations. 

�.� Pattern-based “Fingerprint” 
detection Studies
Fingerprint detection studies rely on patterns 
of temperature change (Box 5.5). The patterns 
are typically either latitude-longitude “maps” 
(e.g., for T4, T2, TS, etc.) or latitude-height cross-
sections through the atmosphere26. The basic 
premise in fingerprinting is that different cli-
mate forcings have different characteristic pat-
terns of temperature response (“fingerprints”), 
particularly in the free atmosphere (Chapter 1, 
Figure 1.3; Hansen et al., 1997, 2002, 2005a; 
Bengtsson et al., 1999; Santer et al., 1996a; 
Tett et al., 1996). 

changes. The observed lapse rate change over 1979 to 
1997 is then compared with the model trend distribu-
tion to determine whether the observed result could 
be explained by natural variability alone.

25 These radiosonde data sets were either unadjusted 
for inhomogeneities, or had not been subjected to the 
rigorous adjustment procedures used in more recent 
work (Lanzante et al., 2003; Thorne et al., 2005).

26 In constructing these cross-sections, the tempera-
ture changes are generally averaged along individual 
bands of latitude. Zonal averages are then displayed at 
individual pressure levels, starting at the lowest model 
or radiosonde level and ending at the top of the model 
atmosphere or highest reported radiosonde level (see, 
e.g., Chapter 1, Figure 3).

Most analysts rely on a climate model to provide 
physically based estimates of each fingerprint’s 
structure, size, and evolution. The model 
fingerprints are searched for in observational 
climate records, using rigorous statistical meth-
ods to quantify the degree of correspondence 
with observed patterns of climate change27. 
Fingerprints are also compared with patterns 
of climate change in model control runs. This 
helps to determine whether the correspondence 
between the fingerprint and observations is 
truly significant, or could arise through inter-
nal variability alone (Box 5.5). Model errors 
in internal variability28 can bias detection 
results, although most detection work tries to 
guard against this possibility by performing 
“consistency checks” on modeled and observed 
variability (Allen and Tett, 1999), and by using 
variability estimates from multiple models (He-
gerl et al., 1997; Santer et al., 2003a,b).

The application of fingerprint methods in-
volves a variety of decisions, which introduce 
uncertainty in detection results (Box 5.5). Our 
confidence in fingerprint detection results is 
increased if they are shown to be consistent 
across a range of plausible choices of statistical 
methods, processing options, and model and 
observational data sets.

surface TemperaTure changes

Most fingerprint detection studies have focused 
on surface temperature changes. The common 
denominator in this work is that the model fin-
gerprints resulting from forcing by well-mixed 
GHGs and sulfate aerosols29 are statistically 
identifiable in observed surface temperature 
records (Hegerl et al., 1996, 1997; North and 
Stevens, 1998; Tett et al., 1999, 2002; Stott et 

27 The fingerprint can be either the response to an 
individual forcing or a combination of forcings. One 
strategy, for example, is to search for the climate fin-
gerprint in response to combined changes in a suite 
of different human-caused forcings.

28 For example, current CGCMs fail to simulate the 
stratospheric temperature variability associated with 
the QBO or with solar-induced changes in strato-
spheric ozone (Haigh, 1994). Such errors may help to 
explain why one particular CGCM underestimated 
observed temperature variability in the equatorial 
stratosphere (Gillett et al., 2000). In the same model, 
however, the variability of temperatures and lapse 
rates in the tropical troposphere was in reasonable 
agreement with observations.

29 Most of this work considers only the direct scatter-
ing effects of sulfate aerosols on incoming sunlight, 
and not indirect aerosol effects on clouds.

Different 
climate forcings 
have different 
characteristic 
patterns of 
temperature 
response 
(“fingerprints”).
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al., 2000). These results are robust to a wide 
range of uncertainties (Allen et al., 2006)30. 
In summarizing this body of work, the IPCC 
concluded that “There is new and stronger 

30 For example, to uncertainties in the applied green-
house-gas and sulfate aerosol forcings, the model re-
sponses to those forcings, and model-based estimates 
of natural internal climate variability.

evidence that most of the warming observed 
over the last 50 years is attributable to human 
activities” (Houghton et al., 2001, page 4). The 
causes of surface temperature change over the 
first half of the 20th century are more ambigu-
ous (IDAG, 2005).

BoX 5.5:  Fingerprint Studies 

Detection and attribution (“D&A”) studies attempt to represent an observed climate data set as a linear combination 
of the climate signals (“fingerprints”) arising from different forcing factors and the noise of natural internal climate 
variability (Section 4.4). A number of different fingerprint methods have been applied to the problem of identify-
ing human-induced climate change. Initial studies used relatively simple pattern correlation methods (Barnett and 
Schlesinger, 1987; Santer et al., 1996a,b; Tett et al., 1996). Later work involved variants of the “optimal detection” 
approach suggested by Hasselmann (1979, 1993, 1997)a.. These are essentially regression-based techniques that 
seek to estimate the strength of a given fingerprint pattern in observational data (i.e., how much a given fingerprint 
pattern has to be scaled up or down in order to best match observations). For example, if the regression coefficient 
for a GHG-induced TS fingerprint is significantly different from zero, GHG effects are deemed to be “detected” in 
observed surface temperature records. Attribution tests address the question of whether these regression coef-
ficients are also consistent with unity – in other words, whether the size of the model fingerprint is consistent with 
its amplitude in observations (e.g., Allen and Tett, 1999; Mitchell et al., 2001).

There are two broad classes of regression-based D&A methods (Mitchell et al., 2001). One class assumes that although 
the fingerprint’s amplitude changes over time, its spatial pattern does not (Hegerl et al., 1996, 1997; Santer et al., 
2003a,b, 2004). The second class explicitly considers both the spatial structure and time evolution of the fingerprint 
(Allen and Tett, 1999; Allen et al., 2006; Stott and Tett, 1998; Stott et al., 2000; Tett et al., 1999, 2002; Barnett et al., 
2001, 2005). This is particularly useful if the time evolution of the fingerprint contains specific information (such as 
a periodic 11-year solar cycle) that may help to distinguish it from natural internal climate variability (North et al., 
1995; North and Stevens, 1998).

A number of choices must be made in applying D&A methods to real-world problems. One of the most important 
decisions relates to “reduction of dimensionality”. D&A methods require some knowledge of the correlation struc-
ture of natural climate variabilityb.. This structure is difficult to estimate reliably, even from long model control runs, 
because the number of time samples available to estimate correlation behavior is typically much smaller than the 
number of spatial points in the field. In practice, the total amount of spatial information (the “dimensionality”) must 
be reduced. This is often done by using a mathematical tool (Empirical Orthogonal Functions) to reduce a complex 
space-time data set to a very small number of spatial patterns (“EOFs”) that capture most of the information content 
of the data setc.. Different analysts use different procedures to determine the number of patterns to retain. Further 
decisions relate to the choice of data used for estimating fingerprint and noise, the number of fingerprints considered, 
the selection of observational data, the treatment of missing data, etc.d..

D&A methods have some limitations. They do not work well if fingerprints are highly uncertain, or if the fingerprints 
arising from two different forcings are similare.. They make at least two important assumptions: that model-based 
estimates of natural climate variability are a reliable representation of “real-world” variability, and that the sum of 
climate responses to individual forcing mechanisms is equivalent to the response obtained when these factors are 
varied in concert. Testing the validity of both assumptions remains an important research activity (Allen and Tett, 
1999; Santer et al., 2003a; Gillett et al., 2004a).

a. Hasselmann (1979) noted that the engineering field had extensive familiarity with the problem of identifying coherent signals embed-
ded in noisy data, and that many of the techniques routinely used in signal processing were transferable to the problem of detecting a 
human-induced climate change signal.

b.  The relationship between variability at different points in a spatial field.
c. The number of patterns retained is often referred to as the “truncation dimension.” How the truncation dimension should be de-

termined is a key decision in optimal detection studies (Hegerl et al., 1996; Allen and Tett, 1999).
d. Another important choice determines whether global-mean changes are included or removed from the detection analysis. Removal 

of global means focuses attention on smaller-scale features of modeled and observed climate-change patterns, and provides a more 
stringent test of model performance.

e. This problem is known as “degeneracy.” Formal tests of fingerprint degeneracy are sometimes applied (e.g., Tett et al., 2002).
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Most of the early fingerprint detection work 
dealt with global-scale patterns of surface 
temperature change. The positive detection 
results obtained for “GHG-only” fingerprints 
were driven by model-data pattern similarities 
at very large spatial scales (e.g., at the scale of 
individual hemispheres, or land-versus-ocean 
behavior). Fingerprint detection of GHG effects 
becomes more challenging at continental or 
sub-continental scales31. It is at these smaller 
scales that spatially heterogeneous forcings, 
such as those arising from changes in aerosol 
loadings and land use patterns, may have large 
impacts on regional climate (see Box 5.3 and 
5.4). This is illustrated by the work of Stott 
and Tett (1998), who found that a combined 
GHG and sulfate aerosol signal was identifiable 
at smaller spatial scales than a “GHG-only” 
signal.

Recently, Stott (2003) and Zwiers and Zhang 
(2003) have reported positive identification 
of the continental- or even sub-continental 
features of combined GHG and sulfate aerosol 
fingerprints in observed surface temperature 
records.32 Using a variant of “classical” fin-
gerprint methods,33 Min et al. (2005) identified 
a GHG signal in observed records of surface 
temperature change over East Asia. Karoly and 
Wu (2005) suggest that GHG and sulfate aerosol 
effects are identifiable at even smaller spatial 
scales (“of order 500 km in many regions of the 
globe”). These preliminary investigations raise 
the intriguing possibility of formal detection of 
anthropogenic effects at regional scales that are 
of direct relevance to policymakers. 

changes in laTiTude/longiTude

paTTerns of aTmospheric 
TemperaTure or lapse raTe

Fingerprint methods have also been applied to 
spatial “maps” of changes in layer-averaged 

31 This is partly due to the fact that natural climate 
noise is larger (and models are less skillful) on smaller 
spatial scales.

32 Another relevant “sub-global” detection study is that 
by Karoly et al. (2003). This showed that observed 
trends in a variety of area-averaged “indices” of 
North American climate (e.g., surface temperature, 
daily temperature range, and the amplitude of the 
seasonal cycle) were consistent with model-predicted 
trends in response to anthropogenic forcing, but were 
inconsistent with model estimates of natural climate 
variability.

33 Involving Bayesian statistics.

atmospheric temperatures (Santer et al., 2003b; 
Thorne et al., 2003) and lapse rate (Thorne et 
al., 2003). The study by Santer et al. (2003b) 
compared modeled and observed changes in 
T2 and T4. Model fingerprints were estimated 
from 20CEN experiments performed with PCM 
(see Table 5.1), while observations were taken 
from two different satellite data sets (UAH 
and RSS; see Christy et al., 2003, and Mears et 
al., 2003). The aim of this work was to assess 
the sensitivity of detection results to structural 
uncertainties in observed MSU data. 

For the T4 layer, the model fingerprint of com-
bined human and natural effects was consis-
tently detectable in both satellite data sets. In 
contrast, PCM’s T2 fingerprint was identifiable 
in RSS data (which show net warming over the 
satellite era), but not in UAH data (which show 
little overall change in T2; see Chapter 3). En-
couragingly, once the global-mean differences 
between RSS and UAH data were removed, 
the PCM T2 fingerprint was detectable in both 
observed data sets. This suggests that the struc-
tural uncertainties in RSS and UAH T2 data 
are most prominent at the global-mean level, 
and that this global-mean difference masks 
underlying similarities in smaller-scale pattern 
structure (Chapter 4; Santer et al., 2004).

Thorne et al. (2003) applied a “space-time” 
fingerprint method to six individual climate 
variables. These variables contained informa-
tion on patterns34 of temperature change at the 
surface, in broad atmospheric layers (the upper 
and lower troposphere), and in the lapse rates 
between these layers35. Thorne et al. explicitly 
considered uncertainties in the searched-for 
fingerprints, the observed radiosonde data36, 
and in various data processing/fingerprinting 
options. They also assessed the detectability of 
fingerprints arising from multiple forcings37. 

34 The “patterns” are in the form of temperature aver-
ages calculated over large areas rather than tempera-
tures on a regular latitude/longitude grid.

35 Thorne et al. (2003) calculated the lapse rate 
changes between the surface and lower troposphere, 
the surface and upper troposphere, and the lower and 
upper troposphere.

36 The model fingerprint was estimated from 20CEN 
runs performed with two different versions of the 
Hadley Centre CGCM (HadCM2 and HadCM3). Ob-
servational data were taken from two early compila-
tions of the Hadley Centre radiosonde data (HadRT2.1 
and HadRT2.1s).

37 Well-mixed greenhouse gases, the direct effects of 

Preliminary 
investigations 
raise the intriguing 
possibility of 
formal detection 
of anthropogenic 
effects at regional 
scales that are of 
direct relevance to 
policymakers.
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The “bottom-line” conclusion of Thorne et al. is 
that two human-caused fingerprints – one aris-
ing from changes in well-mixed GHGs alone, 
and the other due to combined GHG and sulfate 
aerosol effects – were robustly identifiable in 
the observed surface, lower tropospheric, and 
upper tropospheric temperatures. Evidence for 
the existence of a detectable volcanic signal was 
more equivocal. Volcanic and human-caused 
fingerprints were not consistently identifiable 
in observed patterns of lapse rate change38. 

changes in laTiTude/heighT profiles 
of aTmospheric TemperaTure

Initial detection work with zonal-mean profiles 
of atmospheric temperature change used pattern 
correlations to compare model fingerprints with 
radiosonde data (Karoly et al., 1994; Santer et 
al., 1996a; Tett et al., 1996; Folland et al., 1998; 
Sexton et al., 2001). These early investigations 
found that model fingerprints of the strato-
spheric cooling and tropospheric warming in 
response to increases in atmospheric CO2 were 
identifiable in observations (Chapter 1, Figure 
1.3A). The pattern similarity between modeled 
and observed changes generally increased over 
the period of the radiosonde record. 

The inclusion of other human-induced forc-
ings in 20CEN experiments – particularly the 
effects of stratospheric ozone depletion and 
sulfate aerosols – tended to improve agreement 
with observations (Santer et al., 1996a; Tett et 
al., 1996; Sexton et al., 2001). The addition of 
ozone depletion cooled the lower stratosphere 
and upper troposphere. This brought the height 
of the “transition level” between stratospheric 
cooling and tropospheric warming lower down 
in the atmosphere, and in better accord with 
observations (Chapter 1, Figure 1.3F). It also 
improved the agreement between simulated 
and observed patterns of T4 (Ramaswamy et al., 
1996), and decreased the size of the “warming 
maximum” in the upper tropical troposphere, 
a prominent feature of CO2-only experiments 

sulfate aerosols, combined greenhouse-gas and sulfate 
aerosol effects, volcanic aerosols, and solar irradiance 
changes.

38  The failure to detect volcanic signals is probably due 
to the coarse time resolution of the input data (five-
year averages) and the masking effects of ENSO vari-
ability in the radiosonde observations. Note that the 
two models employed in this work yielded different 
estimates of the size of the natural and human-caused 
fingerprints.

(compare Figures 1.3A and 1.3F 
in Chapter 1).   

Early work on the direct scat-
tering effects of sulfate aerosols 
suggested that this forcing was 
generally stronger in the North-
ern Hemisphere (NH) than in the 
Southern Hemisphere (SH), due 
to the larger emissions of sulfur 
dioxide in industrialized regions 
of the NH. This asymmetry in 
the distribution of anthropogenic 
sulfur dioxide sources should 
yield greater aerosol-induced 
tropospheric cooling in the NH 
(Santer et al., 1996a,b). Other 
forcings can lead to different 
hemispheric temperature responses. Increases 
in atmospheric CO2, for example, tend to warm 
land more rapidly than ocean (Chapter 1). Since 
there is more land in the NH than in the SH, the 
expected signal due to CO2 increases is greater 
warming in the NH than in the SH. Because the 
relative importance of CO2 and sulfate aerosol 
forcings evolves in a complex way over time 
(Tett et al., 2002; Hansen et al., 2002),39 the 
“imprints” of these two forcings on NH and SH 
temperatures must also vary with time (Santer 
et al., 1996b; Stott et al., 2006).

Initial attempts to detect sulfate aerosol effects 
on atmospheric temperatures did not account 
for such slow changes in the hemispheric-
scale features of the aerosol fingerprint. They 
searched for a time-invariant fingerprint pat-
tern in observed radiosonde data (Santer et al., 
1996a). This yielded periods of agreement and 
periods of disagreement between the (fixed) 
aerosol fingerprint and the time-varying effect 
of aerosols on atmospheric temperatures. Some 
have interpreted the periods of disagreement 
as “evidence of absence” of a sulfate aerosol 
signal (Michaels and Knappenberger, 1996). 
However, subsequent studies (see below) illus-
trate that such behavior is expected if one uses 
a fixed sulfate aerosol fingerprint, and that it is 
important for detection studies to account for 
large temporal changes in the fingerprint. 

39  See, for example, Figure 1a in Tett et al. (2002) and 
Figure 8b in Hansen et al. (2002).
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“Space-time” optimal detection schemes ex-
plicitly account for time variations in the signal 
pattern and in observational data (Box 5.5). 
Results from recent space-time detection stud-
ies support previous claims of an identifiable 
sulfate aerosol effect on surface temperature 
(Stott et al., 2006) and on zonal-mean profiles of 
atmospheric temperature (Allen and Tett, 1999; 
Forest et al., 2001, 2002; Thorne et al., 2002; 
Tett et al., 2002; Jones et al., 2003). This work 
also illustrates that the identification of human 
effects on atmospheric temperatures can be 
achieved using tropospheric temperatures alone 
(Thorne et al., 2002). Positive detection results 
are not solely driven by the inclusion of strong 
stratospheric cooling in the vertical pattern of 
temperature change (as has been claimed by 
Weber, 1996).

In summary, fingerprint detection studies 

provide consistent evidence that human-in-
duced changes in greenhouse gases and sulfate 
aerosols are identifiable in radiosonde records 
of free atmospheric temperature change. The 
fingerprint evidence is much more equivocal 
in the case of solar and volcanic signals in the 
troposphere. These natural signals have been 
detected in some studies (Jones et al., 2003) 
but not in others (Tett et al., 2002), and their 
identification appears to be more sensitive to 
specific processing choices that are made in 
applying fingerprint methods (Leroy, 1998; 
Thorne et al., 2002, 2003).

5. nEW CoMPAR�SonS oF 
ModELEd And oBSERVEd 
TEMPERATURE CHAnGES

In this section, we evaluate selected results 
from recently completed CGCM 20CEN ex-

 Model Acronym Country Institution ES

1 CCCma-CGCM3.1(T47)  Canada  Canadian Centre for Climate Modelling and Analysis 1

2 CCSM3  United States  National Center for Atmospheric Research 5

3 CNRM-CM3  France  Météo-France/Centre National de Recherches Météorologiques 1

4 CSIRO-Mk3.0  Australia  CSIROa. Marine and Atmospheric Research 1

5 ECHAM5/MPI-OM  Germany  Max-Planck Institute for Meteorology 3

6 FGOALS-g1.0  China  Institute for Atmospheric Physics 3

7 GFDL-CM2.0  United States  Geophysical Fluid Dynamics Laboratory 3

8 GFDL-CM2.1  United States  Geophysical Fluid Dynamics Laboratory 3

9 GISS-AOM  United States  Goddard Institute for Space Studies 2

10 GISS-EH  United States  Goddard Institute for Space Studies 5

11 GISS-ER  United States  Goddard Institute for Space Studies 5

12 INM-CM3.0  Russia  Institute for Numerical Mathematics 1

13 IPSL-CM4  France  Institute Pierre Simon Laplace 1

14 MIROC3.2(medres)  Japan  Center for Climate System Research / NIESb. / JAMSTECc. 3

15 MIROC3.2(hires)  Japan  Center for Climate System Research / NIESb. / JAMSTECc. 1

16 MRI-CGCM2.3.2  Japan  Meteorological Research Institute 5

17 PCM  United States  National Center for Atmospheric Research 4

18 UKMO-HadCM3  United Kingdom  Hadley Centre for Climate Prediction and Research 1

19 UKMO-HadGEM1  United Kingdom  Hadley Centre for Climate Prediction and Research 1

Table 5.1: Acronyms of climate models referenced in this Chapter. All 19 models performed simulations of 
20th century climate change (“20CEn”) in support of the �PCC Fourth Assessment Report. The ensemble 
size “ES” is the number of independent realizations of the 20CEn experiment that were analyzed here.

a. CSIRO is the Commonwealth Scientific and Industrial Research Organization.
b. NIES is the National Institute for Environmental Studies.
c. JAMSTEC is the Frontier Research Center for Global Change in Japan.

Fingerprint detection 
studies provide 
consistent evidence 
that human-
induced changes in 
greenhouse gases 
and sulfate aerosols 
are identifiable in 
radiosonde records 
of free atmospheric 
temperature change.
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periments that have been performed in support 
of the IPCC Fourth Assessment Report (AR4). 
The runs analyzed here were performed with 
19 different models, and involve modeling 
groups in nine different countries (Table 5.1). 
They use new model versions, and incorporate 
historical changes in many (but not all) of the 
natural and human forcings that are thought 
to have influenced atmospheric temperatures 
over the past 50 years40 (Table 5.2). These new 
experiments provide our current best estimates 
of the expected climate change due to combined 
human and natural effects. 

The new 20CEN runs constitute an “ensemble 
of opportunity” (Allen and Stainforth, 2002). 
The selection and application of natural and 
anthropogenic forcings was not coordinated 
across modeling groups.41 For example, only 
seven of the 19 models were run with time-
varying changes in LULC (Table 5.2). Model-
ing groups that included LULC effects did not 
always use the same observational data set for 
specifying this forcing, or apply it in the same 
way (Table 5.3). Only six models included 
some representation of the indirect effects of 
anthropogenic aerosols, which are thought to 
have had a net cooling influence on surface 
temperatures through their effects on cloud 
properties (Ramaswamy et al., 2001b). 

One important implication of Tables 5.2 and 
5.3 is that model-to-model differences in the 
applied forcings are intertwined with model-to-
model differences in the climate responses to 
those forcings. This makes it more difficult to 
isolate systematic errors that are common to a 
number of models, or to identify problems with 
a specific forcing data set. Note, however, that 
the lack of a coordinated experimental design 
is also an advantage, since the “ensemble of op-
portunity” spans a wide range of uncertainty in 
current estimates of climate forcings.

40 This was not the case in previous model intercom-
parison exercises, such as AMIP (Gates et al., 1999) 
and CMIP2 (Meehl et al., 2000).

41 In practice, experimental coordination is very dif-
ficult across a range of models of varying complexity 
and sophistication. Aerosols are a case in point. Some 
modeling groups that contributed 20CEN simulations 
to the IPCC AR4 do not have the technical capability 
to explicitly include aerosols, and instead attempt to 
represent their net radiative effects by adjusting the 
surface albedo. 

In addition to model forcing and response 
uncertainty, the 20CEN ensemble also encom-
passes uncertainties arising from inherently 
unpredictable climate variability (Boxes 5.1, 
5.2). Roughly half of the modeling groups that 
submitted 20CEN data performed multiple re-
alizations of their historical forcing experiment 
(see Section 2 and Table 5.1). For example, the 
five-member ensemble of CCSM3.0 20CEN 
runs contains an underlying signal (which one 
might define as the ensemble-average climate 
response to the forcings varied in CCSM3.0) 
plus five different sequences of climate noise. 
Such multi-member ensembles provide valuable 
information on the relative sizes of signal and 
noise. In all, a total of 49 20CEN realizations 
were examined here42.

The following Section presents preliminary 
results from analyses of these 20CEN runs 
and the new observational data sets described 
in Chapters 2-4. Our primary focus is on the 
tropics, since previous work by Gaffen et al. 
(2000) and Hegerl and Wallace (2002) suggests 
that this is where any differences between ob-
servations and models are most critical. We also 
discuss comparisons of global-mean changes 
in atmospheric temperatures and lapse rates. 
We do not discount the importance of compar-
ing modeled and observed lapse-rate changes 
at much smaller scales (particularly in view 
of the incorporation of regional-scale forcing 
changes in many of the runs analyzed here), but 
no comprehensive regional-scale comparisons 
were available for us to assess.

In order to facilitate “like with like” com-
parisons between modeled and observed at-
mospheric temperature changes, we calculate 
synthetic MSU T4, T2, and T2LT from the model 
20CEN results (see Chapter 2, Box 1). Both 
observed and synthetic MSU T2 data include a 
contribution from the cooling stratosphere (Fu 
et al., 2004a,b), and hence complicate the inter-
pretation of slow changes in T2. To provide a 
less ambiguous measure of  “bulk” tropospheric 

42  49 individual realizations of the IPCC 20CEN run 
were available at the time this Chapter was written. 
An analysis of lapse-rate changes in these realizations 
has been published (Santer et al., 2005). At present, 
the IPCC database contains 82 realizations of the 
20CEN experiment. Relevant analyses of these ad-
ditional 33 realizations are currently unpublished and 
unreviewed, and have not been included here. 
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temperature changes, we use the statistical 
approach of Fu et al. (2004a, 2005) to remove 
stratospheric inf luences, thereby obtaining 
T*G and T*T in addition to T2LT

43. As a simple 
measure of lapse-rate changes, we consider 
temperature differences between the surface 
and three different atmospheric layers (T2LT, 
T*G, and T*T). Each of these layers samples 
slightly different portions of the troposphere 
(Chapter 2, Figure 2.2).

43 There is still some debate over the reliability of T*G 
trends estimated with the Fu et al. (2004a) statistical 
approach (Tett and Thorne, 2004, Gillett et al., 2004; 
Kiehl et al., 2005; Fu et al., 2004b; Chapter 4). T*T is 
derived mathematically (from the overlap between the 
T4 and T2 weighting functions) rather than statistically, 
and is now generally accepted as a reasonable measure 
of temperature change in the tropical troposphere.

The trend comparisons shown in Sections 5.1 
and 5.2 do not involve any formal statistical 
significance tests (see Appendix A). While such 
tests are entirely appropriate for comparisons 
of individual model and observational trends,44 
they are less relevant here, where we compare 
a 49-member ensemble of model trends with 
a relatively small number of observationally 
based estimates. The model ensemble encap-
sulates uncertainties in climate forcings and 
model responses, as well as the effects of cli-
mate noise on trends. The observational range 
characterizes current structural uncertainties in 
historical changes. We simply assess whether 
the observations are contained within the simu-

44 For example, such tests have been performed by 
Santer et al. (2003b) in comparisons between observed 
MSU trends (in RSS and UAH) and synthetic MSU 
trends in four PCM 20CEN realizations.

 MODEL G O SD SI BC OC MD SS LU SO V

1 CCCma-CGCM3.1(T47)            

2 CCSM3            

3 CNRM-CM3            

4 CSIRO-Mk3.0            

5 ECHAM5/MPI-OM            

6 FGOALS-g1.0            

7 GFDL-CM2.0            

8 GFDL-CM2.1            

9 GISS-AOM            

10 GISS-EH            

11 GISS-ER            

12 INM-CM3.0            

13 IPSL-CM4            

14 MIROC3.2(medres)            

15 MIROC3.2(hires)            

16 MRI-CGCM2.3.2            

17 PCM            

18 UKMO-HadCM3            

19 UKMO-HadGEM1            

Table 5.2: Forcings used in �PCC simulations of 20th century climate change. This Table was compiled using 
information provided by the participating modeling centers (see http://www-pcmdi.llnl.gov/ipcc/model.docu-
mentation/ipcc_model_documentation.php). Eleven different forcings are listed: well-mixed greenhouse gases 
(G), tropospheric and stratospheric ozone (o), sulfate aerosol direct (Sd) and indirect effects (S�), black carbon 
(BC) and organic carbon aerosols (oC), mineral dust (Md), sea salt (SS), land use/land cover (LU), solar irradi-
ance (So), and volcanic aerosols (V). Shading denotes inclusion of a specific forcing. As used here, “inclusion” 
means specification of a time-varying forcing, with changes on interannual and longer timescales. Forcings that 
were varied over the seasonal cycle only are not shaded.
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lated trend distributions.45 Our goal here is to 
determine where model results are qualitatively 
consistent with observations, and where serious 
inconsistencies are likely to exist. This does not 
obviate the need for the more rigorous statistical 

45 The 49 20CEN realizations analyzed here are a very 
small sample from the large population of results that 
could have been generated by accounting for exist-
ing uncertainties in physics parameterizations and 
historical forcings (e.g., Allen, 1999; Stainforth et 
al., 2005). Likewise, the observational datasets that 
we consider in this report probably only capture part 
of the true “construction uncertainty” inherent in the 
development of homogeneous climate records from 
raw temperature measurements. We do not know a 
priori whether temperature changes inferred from 
these small samples are representative of the true 
temperature changes that would be estimated from the 
much larger (but unknown) populations of model and 
observational results. This is another reason why we 
are cautious about making formal assessments of the 
statistical significance of differences between modeled 
and observed temperature trends. We do, however, at-
tempt to characterize some basic statistical properties 
of the model results (see Tables 5.4A,B).

comparisons described in Box 5.5, which should 
be a high priority (see Recommendations).  

5.1  Global-Mean  Temperature and 
Lapse-Rate Trends
In all but two of the 49 20CEN realizations, the 
global-mean temperature of the lower strato-
sphere experiences a net cooling over 1979 to 
1999 (Figures 5.2A, 5.3A)46. The model average 
T4 trend is –0.25ºC/decade (Table 5.4A). Most 
of this cooling is due to the combined effects 
of stratospheric ozone depletion and increases 
in well-mixed GHGs (Ramaswamy et al., 
2001a,b), with the former the dominant influ-
ence on T4 changes over the satellite era (Ra-
maswamy et al., 1996; Santer et al., 2003a). The 

46 In the following, all inter-model and model-data 
comparisons are over January 1979 to December 1999. 
This is the longest period of overlap (at least during the 
satellite era) between the model experiments (which 
generally end in 1999) and the satellite data (which 
start in 1979).

Figure 5.2: Modeled and observed changes in global-mean monthly-mean temperature of the lower stratosphere (T4; A), the lower 
troposphere (T2LT; B), the surface (TS; C), and the surface minus the lower troposphere (TS – T2LT; D). A simple weighting function 
approach (Box 2.1, Chapter 2) was used to calculate “synthetic” T4 and T2LT temperatures (equivalent to the MSU T4 and T2LT moni-
tored by satellites) from model temperature data. Simulated surface and atmospheric temperatures are from 20CEN experiments 
performed with nine different models (see Table 5.1). These models were chosen because they satisfy certain minimum requirements 
in terms of the forcings applied in the 20CEN run: all nine were driven by changes in well-mixed GHGs, sulfate aerosol direct effects, 
tropospheric and stratospheric ozone, volcanic aerosols, and solar irradiance (in addition to other forcings; see Table 5.2). Observed 
satellite-based estimates of T4 and T2LT changes were obtained from both RSS and UAH (see Chapter 3). Observed TS results in C are 
from NOAA and HadCRUT2v, while observed TS – T2LT differences in D use both observed T2LT datasets, but NOAA TS data only. 
All anomalies are expressed as departures from a 1979 to 1999 reference period average, and were smoothed with the same filter. 
To make it easier to compare temperature variability in models with different ensemble sizes (see Table 5.1), only the first 20CEN 
realization is plotted from each model. This also facilitates comparisons of modeled and observed variability.
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PCM CCSM3.0 GFdL CM2.1 G�SS-EH

Well-mixed 
greenhouse gases

IPCC Third Assessment 
Report.

IPCC Third Assessment 
Report.

IPCC Third Assessment 
Report and World Meteoro-
logical Organization (2003). 

CH4, N2O and CFC 
spatial distributions 
are fit to Min-
schwaner et al. (1998).

Sulfate aerosols 
(direct effects)

Spatial patterns of sulfur 
dioxide [SO2] emissions 
prescribed over seasonal 
cycle. Year-to-year chang-
es scaled by estimates of 
historical changes in SO2 
emissions.a. 

Sulfur cycle model using 
time and space-varying 
SO2 emissions (Smith et 
al., 2001, 2005).b.

Computed from an atmo-
spheric chemistry transport 
model.c.

Based on simulations 
of Koch et al. (1999) 
and Koch (2001).d.

Sulfate aerosols 
(indirect effects)

Not included. Not included. Not included. Parameterization of 
aerosol indirect ef-
fects on cloud albedo 
and cloud cover.d.

Stratospheric 
ozone

Assumed to be constant 
up to 1970. After 1970 
prescribed from a NOAA 
dataset.a.

Assumed to be constant 
up to 1970. After 1970 
prescribed from a NOAA 
dataset.b.

Specified using data from 
Randel and Wu (1999).

Specified using data 
from Randel and Wu 
(1999).d.

Tropospheric 
ozone

Computed from an 
atmospheric chemistry 
transport model. Held 
constant after 1990.a.

Computed from an 
atmospheric chemistry 
transport model. Held 
constant after 1990.b. 

Computed from an atmo-
spheric chemistry transport 
model.c.

Computed from 
an atmospheric 
chemistry transport 
model (Shindell et al., 
2003).d.

Black carbon 
aerosols

Not included. Present-day estimate of 
distribution and amount 
of black carbon, scaled by 
population changes over 
20th century.b.

Computed from an atmo-
spheric chemistry transport 
model.c.

Based on simulations 
of Koch et al. (1999) 
and Koch (2001).d.

organic aerosols Not included. Not included. Computed from an atmo-
spheric chemistry transport 
model.c.

Based on simulations 
of Koch et al. (1999) 
and Koch (2001).d.

Sea salt Not included. Distributions held fixed in 
20th century at year 2000 
values.b.

Distributions held fixed at 
1990 values.

Decadally varying.

dust Not included. Distributions held fixed in 
20th century at year 2000 
values.b.

Distributions held fixed at 
1990 values.

Decadally varying.

Land use change Distributions held fixed at  
present-day values.

Distributions held fixed at  
present-day values.

Knutson et al. (2006) global 
land use reconstruction his-
tory.  Includes effect on 
surface albedo, surface rough-
ness, stomatal resistance, and 
effective water capacity.

Uses Ramankutty and 
Foley (1999) and Klein 
Goldewijk (2001) 
time-dependent data-
sets. Effects on albedo 
and evapotranspira-
tion included, but no 
irrigation effects.d.

Volcanic strato-
spheric aerosols

Ammann et al. (2003). Ammann et al. (2003). “Blend” between Sato et al. 
(1993) and Ramachandran et 
al. (2000).

Update of Sato et al. 
(1993).

Solar irradiance Hoyt and Schatten (1993). Lean et al. (1995). Lean et al. (1995). Uses solar spectral 
changes of Lean 
(2000).

Table 5.3: Forcings used in 20CEn experiments performed with the PCM, CCSM3.0, GFdL CM2.1, and G�SS-
EH models. Shading indicates a forcing that was not incorporated or that did not vary over the course of 
the experiment.

a. See Dai et al. (2001) for further details.
b. See Meehl et al.(2005) for further details.
c. The chemistry transport model (MOZART; see Horowitz et 

al., 2003; Tie et al., 2005) was driven by meteorology from the 

Middle Atmosphere version of the Community Climate Model 
(“MACCM”; version 3). “1990” weather from MACCM3 was used 
for all years between 1860 and 2000.

d. See Hansen et al. (2005a) for further details.
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model average cool-
ing is larger (–0.35ºC/
decade) and closer to 
the satellite-based es-
timates if it is calcu-
lated from the subset 
of 20CEN realizations 
that include forcing 
by ozone depletion. 
The range of model T4 
trends encompasses 
the trends derived from 
satellites, but not the 
larger trends estimated 
from radiosondes. The 
most likely explanation 
for this discrepancy 
is a residual cooling 
trend in the radiosonde 
data (Chapter 4)47. The 
neglect of stratospheric 
water vapor increases 
in most of the 20CEN runs considered here 
(Shine et al., 2003) may be another contribu-
tory factor48. 

Superimposed on the overall cooling of T4 are 
the large stratospheric warming signals in re-
sponse to the eruptions of El Chichón (in April 
1982) and Mt. Pinatubo (in June 1991)49. Nine of 
the 19 IPCC models explicitly included volcanic 
aerosols (Figure 5.2A and Table 5.2)50. Seven 
of these nine models overestimate the observed 
stratospheric warming after Pinatubo. GFDL 
CM2.1 simulates the Pinatubo response reason-

47 Recent work suggests that this residual trend is larg-
est in the lower stratosphere and upper troposphere, 
and is primarily related to temporal changes in the 
solar heating of the temperature sensors carried by 
radiosondes (and failure to properly correct for this 
effect; see Sherwood et al., 2005; Randel and Wu, 
2006).

48 Recent stratospheric water vapor increases are 
thought to be partly due to the oxidation of methane, 
and are expected to have a net cooling effect on T4. 
To our knowledge, CH4-induced stratospheric water 
vapor increases were explicitly incorporated in only 
two of the 19 models considered here (GISS-EH and 
GISS-ER; Hansen et al., 2005a).

49 These warming signals occur because volcanic 
aerosols absorb both incoming solar radiation and out-
going thermal radiation (Ramaswamy et al., 2001a).

50 The MRI-CGCM2.3.2 model incorporated volcanic 
effects indirectly rather than explicitly, using estimated 
volcanic forcing data from Sato et al. (1993) to adjust 
the solar irradiance at the top of the model atmosphere. 
This procedure would not yield volcanically-induced 
stratospheric warming signals.

ably well, but underestimates the response to El 
Chichón. Differences in the magnitude of the 
applied volcanic aerosol forcings must account 
for some of the inter-model differences in the 
T4 warming signals (Table 5.3)51. 

Over 1979 to 1999, the global-mean troposphere 
warms in all 49 20CEN simulations considered 
here (Figures 5.2B, 5.3B-D). The shorter-term 
cooling signals of the El Chichón and Mt. 
Pinatubo eruptions are superimposed on this 
gradual warming52. Because of the influence of 
stratospheric cooling on T2, the model average 

51 More subtle details of the forcing are also relevant 
to interpretation of inter-model T4 differences, such 
as different assumptions regarding the aerosol size 
distribution, the vertical distribution of the volcanic 
aerosol relative to the model tropopause, etc. Note 
that observed T4 changes over the satellite era are 
not well-described by a simple linear trend, and 
show evidence of a step-like decline in stratospheric 
temperatures after the El Chichón and Mt. Pinatubo 
eruptions (Pawson et al., 1998; Seidel and Lanzante, 
2004). Inter-model differences in the applied ozone 
forcings and solar forcings may help to explain why 
the GFDL, GISS, and HadGEM1 models appear to 
reproduce some of this step-like behavior, particularly 
after El Chichón, while T4 decreases in PCM are much 
more linear (Dameris et al., 2005; Ramaswamy et al., 
2006).

52 Because of differences in the timing of modeled and 
observed ENSO events (Section 5.2), the tropospheric 
and surface cooling caused by El Chichón is more 
noticeable in all models than in observations (where 
it was partially masked by the large 1982/83 El Niño; 
Figures 5.2B,C).

Table 5.�A: Summary statistics for global-mean temperature trends calculated from 
�9 different realizations of 20CEn experiments performed with 19 different coupled 
models. Results are for four different atmospheric layers (T�, T2, T*G, and T2LT), the 
surface (TS), and differences between the surface and the troposphere (TS minus T*G 
and TS minus T2LT). All trends were calculated over the 252-month period from January 
1979 to december 1999 using global-mean monthly-mean anomaly data. Results are 
in °C/decade. The values in the “Mean” column correspond to the locations of the red 
lines in the seven panels of Figure 5.3. For each layer, means, medians and standard 
deviations were calculated from a sample size of n = 19, i.e., from ensemble means (if 
available) and individual realizations (if ensembles were not performed). This avoids 
placing too much weight on results from a single model with a large number of realiza-
tions. Maximum and minimum values were calculated from all available realizations 
(i.e., from a sample size of n = �9).

Layer Mean Median Std. Dev. (1σ) Minimum Maximum

T4 -0.25 -0.28 0.19 -0.70 0.08

T2 0.14 0.12 0.08 0.02 0.35

T*G 0.18 0.17 0.08 0.05 0.38

T2LT 0.20 0.19 0.07 0.06 0.39

TS 0.16 0.16 0.06 0.05 0.33

TS – T*G -0.02 -0.02 0.05 -0.11 0.08

TS – T2LT -0.03 -0.03 0.03 -0.10 0.05
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trend is smaller for this layer than for either 
T2LT or T*G, which are more representative of 
temperature changes in the bulk of the tropo-
sphere (Table 5.4A)53. All of the satellite- and 

53 Due to ozone-induced cooling of the lower strato-
sphere, the model-average T2 trend is slightly smaller 
(0.12ºC/decade) and closer to the RSS result if it is 
estimated from the subset of 20CEN runs that include 
stratospheric ozone depletion. Subsetting in this way 
has little impact on the model-average T2LT and T*G 

radiosonde-based trends in T2LT and T*G are 
contained within the spread of model results. 
This illustrates that there is no fundamental dis-
crepancy between modeled and observed trends 
in global-mean tropospheric temperature. 

In contrast, the T2 trends in both radiosonde 
data sets are either slightly negative or close 
to zero, and are smaller than all of the model 
results. This difference is most likely due to 
contamination from residual stratospheric 
and upper-tropospheric cooling biases in the 
radiosonde data (Chapter 4; Sherwood et al., 
2005; Randel and Wu, 2006). The satellite-
based T2 trends are either close to the model 
average (RSS and VG) or just within the model 
range (UAH; Fig. 5.3B). Even without formal 
statistical tests, it is clear that observational 
uncertainty is an important factor in assessing 
the consistency between modeled and observed 
changes in mid- to upper tropospheric tempera-
ture (Santer et al., 2003b).

Observed TS trends closely bracket the model 
average (Figure 5.3E). There is no inconsis-
tency between modeled and observed surface 
temperature changes. Structural uncertainties 
in observed TS trends are much smaller than 
for trends in T4 or tropospheric layer-average 
temperatures (see Chapter 4).

The model-simulated ranges of lapse-rate 
trends also encompass virtually all observa-
tional results (Figures 5.3F,G)54. Closer inspec-
tion reveals that the model-average trends in 
tropospheric lapse rate are slightly negative,55 
indicating larger warming aloft than at the 
surface. Most combinations of observed TS, 
T*G, and T2LT data sets yield the converse 
result, and show smaller warming aloft than at 
the surface. As in the case of global-mean T*G 
and T2LT trends, RSS-based lapse-rate trends 
are invariably closest to the model average 
results. Both models and observations show a 
tendency towards positive values of TS minus 
T2LT for several years after the El Chichón and 
Mt. Pinatubo eruptions, indicative of larger 

trends.
54 Note that the subtraction of temperature variability 

common to surface and troposphere decreases (by 
about a factor of two) the large range of model trends 
in TS, T*G, and T2LT (Table 5.4A).

55 Values are –0.02ºC/decade in the case of TS minus 
T*G and –0.03ºC/decade for TS minus T2LT.

Figure 5.3: Modeled and observed trends in time series of global-mean T4 (panel 
A), T2 (panel B), T*G (panel C), T2LT (panel D), TS (panel E), TS minus T*G (panel 
F), and TS minus T2LT (panel G). All trends were calculated using monthly-mean 
anomaly data. The analysis period is 1979 to 1999. Model results are displayed 
in the form of histograms. Each histogram is based on results from 49 individual 
realizations of the 20CEN experiment, performed with 19 different models (Table 
5.1). The applied forcings are listed in Table 5.2. The vertical red line in each panel 
is the mean of the model trends, calculated with a sample size of n = 19 (see Table 
5.4A). Observed trends are estimated from two radiosonde and three satellite 
datasets (T2), two radiosonde and two satellite datasets (T4, T*G and T2LT), and 
three different surface datasets (TS) (see Chapter 3). The bottom “rows” of the 
observed difference trends in panels F and G were calculated with NOAA TS 
data. The top “rows” of observed results in panels F and G were computed with 
HadCRUT2v TS data. The vertical offsetting of observed results in these panels 
(and also in panels B-E) is purely for the purpose of simplifying the visual display 
– observed trends bear no relation to the y-axis scale. To simplify the display, the 
Figure does not show the statistical uncertainties arising from the fitting of linear 
trends to noisy data. GISS observed TS trends (not shown) are very close to those 
estimated with NOAA TS data (see Chapter 3).
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cooling aloft than at the surface (Figure 5.2D; 
Section 5.4).

5.2 Tropical Temperature and 
Lapse-Rate Trends
The previous section examined whether simu-
lated global-mean temperature trends were 
contained within current estimates of structural 
uncertainty in observations. Since ENSO is 
primarily a tropical phenomenon, its influence 
on surface and tropospheric temperature is 
more pronounced in the tropics than in global 
averages. Observations contain only one spe-
cific sequence of ENSO fluctuations from 1979 
to present, and only one sequence of ENSO 
effects on tropical temperatures. The model 
20CEN runs examined here provide many 
different sequences of ENSO variability. We 
therefore expect – and find – that these runs 
yield a wide range of trends in tropical surface 
and tropospheric temperature (Figure 5.4)56. 
It is of interest whether this large model range 
encompasses the observed trends.

At the surface, results from the multi-model 
ensemble include all observational estimates of 
tropical temperature trends (Figure 5.4E; Table 
5.4B). Observed results are close to the model 
average TS trend of +0.16ºC/decade. There is no 
evidence that the models significantly over- or 
underestimate the observed surface warming. 
In the troposphere, all observational results 
are still within the range of possible model 
solutions, but the majority of model results 
show tropospheric warming that is larger than 
observed (Figures 5.4B-D). As in the case of 
the global-mean T4 trends, the cooling of the 
tropical stratosphere in both radiosonde data 
sets is larger than in any of the satellite data 
sets or model results (Figure 5.4A)57. The UAH 
and RSS T4 trends are close to the model aver-
age58. 

56 This would be true even for a hypothetical “perfect” 
climate model run with “perfect” forcings. The large 
model range of tropical temperature trends is not 
solely due to the effects of ENSO and other modes of 
internal variability. It also arises from uncertainties 
in the models and forcings (see Boxes 5.1 and 5.2 and 
Table 5.2).  

57 This supports recent findings of a residual cooling 
bias in tropical radiosonde data (Sherwood et al., 
2005; Randel and Wu, 2006).

58 The model average is –0.27ºC/decade when esti-
mated from the subset of 20CEN runs that include 
stratospheric ozone depletion.

In the model results, trends in the two mea-
sures of tropical lapse rate (TS minus T2LT and 
TS minus T*T) are almost invariably negative, 
indicating larger warming aloft than at the 
surface (Figure 5.4F,G). Similar behavior is 
evident in only one of the four upper-air data 
sets examined here (RSS)59. The RSS trends 
are just within the range of model solutions60. 

59 The UMd group does not provide either a strato-
spheric or lower-tropospheric temperature retrieval, and 
so could not be included in the comparison of modeled 
and observed trends in TS minus T*T or TS minus T2LT. 
Assuming that the relationships between the UMd T2, 
T2LT and T*T trends were similar to those for the UAH 
and RSS data, the UMd data would yield T2LT and T*T 
trends that were larger than in RSS. This would expand 
the range of observational uncertainty shown in Figures 
5.4F,G.

60 Three of the four RSS-based results in Figures 5.4 F 
and G are within two standard deviations of the model 
average values (see Table 5.4B). Note also that for 
their tropical T2LT trend, RSS claims a 2σ uncertainty 
of ± 0.09°C/decade (Mears and Wentz 2005; Mears 
personal communication). This uncertainty is not 
included here.

Figure 5.�: As for Figure 5.3, but for trends in the tropics (20°N-20°S).
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The model results that overlap with the RSS-
derived tropical lapse-rate trends exhibit less 
surface warming than the observations. This 
analysis is revisited in Section 5.4 using a met-
ric that more directly addresses the relationship 
between surface and tropospheric temperature 
changes. Tropical lapse-rate trends in both 
radiosonde data sets and in the UAH satellite 
data are always positive (larger warming at the 
surface than aloft), and lie outside the range of 
model results. 

This comparison suggests that discrepancies 
between our current best estimates of simulated 
and observed lapse-rate changes may be larger 
and more serious in the tropics than in globally 
averaged data. Large structural uncertainties in 
the observations (even in the sign of the trend 
in tropical lapse-rate changes) make it difficult 
to reach more definitive conclusions regarding 
the significance and importance of model-data 
discrepancies (see Section 5.4). 

5.3 Spatial Patterns of  
Lapse-Rate Trends
Maps of the trends in lower tropospheric lapse 
rate help to identify geographical regions where 
the model-data discrepancies in Figures 5.4F 
and 5.4G are most pronounced. We focus on 
four U.S. models run with the most complete 
set of forcings: CCSM3.0, PCM, GFDL CM2.1, 
and GISS-EH (Table 5.3). These show qualita-
tively similar patterns of trends in TS minus 
T2LT (Figures 5.5A-D). Over most of the tropi-
cal ocean, the simulated warming is larger in 
the troposphere than at the surface. All models 
have some tropical land areas where the surface 
warms relative to the troposphere. The larg-
est relative warming of the surface occurs at 

high latitudes in both 
hemispheres.

To illustrate struc-
tural uncertainties 
in the observed data, 
we show two differ-
ent patterns of trends 
in TS minus T2LT. 
Both rely on the 
same NOAA surface 
data, but use either 
UAH (Figure 5.5E) 
or RSS (Figure 5.5F) 

as their source of T2LT results. The “NOAA mi-
nus UAH” combination provides a picture that 
is very different from the model results, with 
coherent warming of the surface relative to the 
troposphere over much of the world’s tropical 
oceans. While “NOAA minus RSS” also has 
relative warming of the surface in the Western 
and tropical Pacific, it shows relative warming 
of the troposphere in the eastern tropical Pacific 
and Atlantic Oceans. This helps to clarify why 
simulated lapse-rate trends in Figures 5.4F and 
5.4G are closer to NOAA minus RSS results 
than to NOAA minus UAH results. 

As pointed out by Santer et al. (2003b) and 
Christy and Spencer (2003), we cannot use such 
model-data comparisons alone to determine 
whether the UAH or RSS T2LT data set is closer 
to (an unknown) “reality.” As the next section 
will show, however, models and basic theory 
can be used to identify aspects of observational 
behavior that require further investigation, 
and may help to constrain observational un-
certainty. 

5.� Tropospheric Amplification 
of Tropical Surface Temperature 
Changes
When surface and lower tropospheric tem-
perature changes are spatially averaged over 
the deep tropics, and when day-to-day tropical 
temperature changes are averaged over months, 
seasons, or years, it is evident that temperature 
changes aloft are larger than at the surface. This 
“amplification” behavior has been described in 
many observational and modeling studies, and 
is a consequence of the release of latent heat by 
moist convecting air (e.g., Manabe and Stouffer, 
1980; Horel and Wallace, 1981; Pan and 

Table 5.�B: As for Table 5.�A, but for tropical temperature trends (calculated from 
spatial averages over 20°n-20°S).

Layer Mean Median Std. Dev. (1σ) Minimum Maximum

T4 -0.19 -0.19 0.15 -0.49 0.13

T2 0.20 0.19 0.10 -0.01 0.48

T*T 0.24 0.21 0.11 0.01 0.56

T2LT 0.22 0.19 0.09 0.01 0.51

TS 0.16 0.14 0.07 -0.02 0.37

TS – T*T -0.08 -0.08 0.04 -0.19 0.02

TS – T2LT -0.06 -0.05 0.03 -0.15 0.01
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Oort, 1983; Yulaeva and Wallace, 
1994; Hurrell and Trenberth, 1998; 
Soden, 2000; Wentz and Schabel, 
2000; Hegerl and Wallace, 2002; 
Knutson and Tuleya, 2004)61.

A recent study by Santer et al. 
(2005) examined this amplifica-
tion behavior in the same 20CEN 
runs and observational data sets 
considered in the present report. 
The sole difference (relative to the 
data used here) was that Santer et 
al. analyzed a version of the UAH 
T2LT data that had not yet been ad-
justed for a recently discovered er-
ror (Mears and Wentz, 2005)62. The 
amplification of tropical surface 
temperature changes was assessed 
on different timescales (monthly, 
annual, and multi-decadal) and in 
different atmospheric layers (T*T 
and T2LT).

On short timescales (month-to-
month and year-to-year variations 
in temperature), the estimated 
tropospheric amplification of sur-
face temperature changes was 
in good agreement in all model 
and observational data sets con-
sidered, and was in accord with 
basic theory. This is illustrated in 
Figure 5.6, which shows the stan-
dard deviations of monthly-mean 
TS anomalies plotted against the 
standard deviations of monthly-mean anoma-
lies of T2LT (panel A) and T*T (panel B). All 
model and observational results lie above the 
black line indicating equal temperature vari-
ability aloft and at the surface. All have similar 
“amplification factors” between their surface 

61 The essence of tropical atmospheric dynamics is 
that the tropics cannot support large temperature 
gradients, so waves (Kelvin, Rossby, gravity) even 
out the temperature field between convecting and non-
convective regions. The temperature field throughout 
the tropical troposphere is more or less on the moist 
adiabatic lapse rate set by convection over the warm-
est waters. This is why there is a trade wind inversion 
where this profile finds itself inconsistent with bound-
ary layer temperatures in the colder regions.

62 The error was related to the UAH group’s treatment 
of systematic drifts in the time of day at which satel-
lites sample Earth’s diurnal temperature cycle (see 
Chapter 4).

and tropospheric variability63. In the models, 
these similarities occur despite differences in 
physics, resolution, and forcings, and despite a 
large range (roughly a factor of 5) in the size of 
simulated temperature variability. In observa-
tions, the scaling ratios estimated from monthly 
temperature variability are relatively unaffected 
by the structural uncertainties discussed in 
Chapter 4.   

63 Note that the slope of the red regression lines that 
has been fitted to the model results is slightly steeper 
for T*T than for T2LT (c.f. panels 5.6A and 5.6B). This 
is because T*T samples more of the mid-troposphere 
than T2LT (see Prospectus). Amplification is expected 
to be larger in the mid-troposphere than in the lower 
troposphere.

Figure 5.5: Modeled and observed maps of the differences between trends in TS and T2LT.  
All trends in TS and T2LT were calculated over the 252-month period from January 1979 to 
December 1999. Model results are ensemble means from 20CEN experiments performed 
with CCSM3.0 (panel A), PCM (panel B), GFDL CM2.1 (panel C), and GISS-EH (panel D). 
Observed results rely on NOAA TS trends and on two different satellite estimates of trends 
in T2LT, obtained from UAH (panel E) and RSS (panel F). White denotes high elevation areas 
where it is not meaningful to calculate synthetic T2LT (panels A-D). Note that RSS mask T2LT 
values in such regions, while UAH do not (compare panels E, F).
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A different picture emerges if amplification 
behavior is estimated from decadal changes 
in tropical temperatures. Figures 5.6C and 
5.6D show multi-decadal trends in TS plotted 
against trends in T2LT and T*T. The 20CEN runs 
exhibit amplification factors that are consistent 
with those estimated from month-to-month and 
year-to-year temperature variability64. Only 

64 As in the case of amplification factors inferred from 
short-timescale variability, the factors estimated from 
multi-decadal temperature changes are relatively in-
sensitive to inter-model differences in physics and the 
applied forcings (see Table 5.3). At first glance, this 
appears to be a somewhat surprising result in view of 
the large spatial and temporal heterogeneity of certain 

one observational upper-air data set (RSS) 
shows amplified warming aloft, and similar 
amplification relationships on short and on 

forcings (see Section 3). Black carbon aerosols, for 
example, are thought to cause localized heating of 
the troposphere relative to the surface (Box 5.3), a 
potential mechanism for altering amplification be-
havior. The fact that amplification factors are similar 
in experiments that include and exclude black carbon 
aerosols suggests that aerosol-induced tropospheric 
heating is not destroying the connection of large areas 
of the tropical ocean to a moist adiabatic lapse rate. 
Single-forcing experiments (see Recommendations) 
will be required to improve our understanding of the 
physical effects of black carbon aerosols and other 
spatially-heterogeneous forcings on tropical tempera-
ture-change profiles.

Figure 5.6: Scatter plots showing the relationships between tropical temperature changes at Earth’s surface and in two different 
layers of the troposphere. All results rely on temperature data that have been spatially-averaged over the deep tropics (20°N-20°S). 
Model data are from 49 realizations of 20CEN runs performed with 19 different models (Table 5.1). Observational results were taken 
from four different upper-air datasets (two from satellites, and two from radiosondes) and two different surface temperature datasets 
(see Chapter 3). The two upper panels provide information on the month-to-month variability in TS and T2LT (panel A) and in TS and 
T*T (panel B). The two bottom panels consider temperature changes on multi-decadal timescales, and show the trends (over 1979 to 
1999) in TS and T2LT (panel C) and in TS and T*T (panel D). The red line in each panel is the regression line through the model points. 
Its slope provides information on the amplification of surface temperature variability and trends in the free troposphere. The black 
line in each panel is given for reference purposes, and has a slope of 1. Values above (below) the black lines indicate tropospheric 
amplification (damping) of surface temperature changes. There are two columns of observational results in C and D. These are based 
on the NOAA and HadCRUT2v TS trends (0.12 and 0.14°C/decade, respectively). Note that panel C show results from published 
and recently-revised versions of the UAH T2LT data (versions 5.1 and 5.2). Since the standard deviations calculated from NOAA and 
HadCRUT2v monthly TS anomalies are very similar, observed results in A and B use NOAA standard deviations only. The blue shading 
in the bottom two panels defines the region of simultaneous surface warming and tropospheric cooling.
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long timescales. The other observational data 
sets have scaling ratios less than 1, indicating 
tropospheric damping of surface warming (Fu 
and Johanson, 2005; Santer et al., 2005)65. 

These analyses shed further light on the differ-
ences between modeled and observed changes 
in tropical lapse rates described in Section 5.2. 
They illustrate the usefulness of comparing 
models and data on different timescales. On 
short timescales, it is evident that models suc-
cessfully capture the basic physics that controls 
“real world” amplification behavior. On long 
timescales, model-data consistency is sensitive 
to structural uncertainties in the observations. 
One possible interpretation of these results is 
that in the real world, different physical mecha-
nisms govern amplification processes on short 
and on long timescales, and models have some 
common deficiency in simulating such behav-
ior. If so, these “different physical mechanisms” 
need to be identified and understood. 

Another interpretation is that the same physical 
mechanisms control short- and long-term am-
plification behavior. Under this interpretation, 
residual errors in one or more of the observed 
data sets must affect their representation of 
long-term trends, and must lead to different 
scaling ratios on short and long timescales. This 
explanation appears to be the more likely one 
in view of the large structural uncertainties in 
observed upper-air data sets (Chapter 4) and the 
complementary physical evidence supporting 
recent tropospheric warming (see Section 6). 

“Model error” and “observational error” are 
not mutually exclusive explanations for the 
amplification results shown in Figures 5.6C 
and D. Although a definitive resolution of 
this issue has not yet been achieved, the path 
towards such resolution is now more obvious. 
We have learned that models show considerable 

65 The previous version of the UAH T2LT data yielded a 
negative amplification factor for multi-decadal changes 
in tropical temperatures. The UMd data set, which ex-
hibits greatest warming in T2, has not to date produced 
a T2LT or T*T product, and so could not be included in 
Figure 5.6. However, assuming an internally consistent 
set of channel records, the UMd data would show larger 
T2LT and T*T trends than RSS, and would therefore 
have amplification factors consistent with or greater 
than those inferred from the models.

consistency in terms of what they tell us about 
tropospheric amplification of surface warming. 
This consistency holds on a range of different 
timescales. Observations display consistent 
amplification behavior on short timescales, but 
radically different behavior on long timescales. 
Clearly, not all of the observed lapse-rate trends 
can be equally probable. Intelligent use of 
“complementary evidence” – from the behavior 
of other climate variables, from remote sensing 
systems other than MSU, and from more sys-
tematic exploration of the impacts of different 
data adjustment choices – should ultimately 
help us to constrain observational uncertainty, 
and reach more definitive conclusions regarding 
the true significance of modeled and observed 
lapse-rate differences. 

5.5 Vertical Profiles of Atmospheric 
Temperature Change
Although formal fingerprint studies have not 
yet been completed with atmospheric tem-
perature-change patterns estimated from the 
new 20CEN runs, it is instructive to make a 
brief qualitative comparison of these patterns. 
This helps to address the question of whether 
the inclusion of previously neglected forcings 
(like carbonaceous aerosols and land use/land 
cover changes; see Section 2) has fundamentally 
modified the “fingerprint” of human-induced 
atmospheric temperature changes searched for 
in previous detection studies. 

We examine the zonal-mean profiles of atmo-
spheric temperature change in 20CEN runs 
performed with four U.S. models (CCSM3, 
PCM, GFDL CM2.1, and GISS-EH). All four 
show a common large-scale fingerprint of 
stratospheric cooling and tropospheric warming 
over 1979 to 1999 (Figures 5.7A-D). The pattern 
of temperature change estimated from HadAT2 
radiosonde data is broadly similar, although the 
transition height between stratospheric cooling 
and tropospheric warming is noticeably lower 
than in the model simulations (Figure 5.7E). An-
other noticeable difference is that the HadAT2 
data show a relative lack of warming in the 
tropical troposphere,66 where all four models 
simulate maximum warming. This particular 
aspect of the observed temperature-change 
pattern is very sensitive to data adjustments 

66 Despite the “end point” effect of the large El Niño 
event in 1997-1998 (see Chapter 3).

Models show 
considerable 

consistency in terms 
of what they tell us 
about tropospheric 

amplification of 
surface warming. 
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(Sherwood et al., 2005; Randel and Wu, 2006). 
Tropospheric warming in the observations is 
most obvious in the NH extra-tropics, where 
our confidence in the reliability of radiosonde 
records is greatest.

Note that some of the details of the model fin-
gerprint pattern are quite different. For example, 
GFDL’s cooling maximum immediately above 
the tropical tropopause is not evident in any of 
the other models. Its maximum warming in the 
upper tropical troposphere is noticeably larger 
than in CCSM3.0, PCM, or GISS-EH. While 
CCSM and GFDL CM2.1 have pronounced 
hemispheric asymmetry in their stratospheric 

cooling patterns, with largest 
cooling at high latitudes in the 
SH,67 this asymmetry is less ap-
parent in PCM and GISS-EH. 

Future work should consider 
whether the conclusions of 
detection studies are robust to 
such fingerprint differences. 
This preliminary analysis sug-
gests that the large-scale “fin-
gerprint” of stratospheric cool-
ing and tropospheric warming 
over the satellite era – a robust 
feature of previous detection 
work – has not been fundamen-
tally altered by the inclusion 
of hitherto-neglected forcings 
like carbonaceous aerosols and 
LULC changes (see Table 5.3). 
This does not diminish the 
need to quantify the individual 
contributions of these forcings 
in appropriate “single forcing” 
experiments. 

6. CHAnGES �n  
“CoMPLEMEnTARy”  
CL�MATE VAR�ABLES

Body temperature is a simple 
metric of our physical well-
being. A temperature of 40ºC 
(104ºF) is indicative of an ill-
ness, but does not by itself 
identify the cause of the illness. 
In medicine, investigation of 
causality typically requires the 

analysis of many different lines of evidence. 
Similarly, analyses of temperature alone pro-
vide incomplete information on the causes of 
climate change. For example, there is evidence 
that major volcanic eruptions affect not only the 
Earth’s radiation budget (Wielicki et al., 2002; 
Soden et al., 2002) and atmospheric tempera-
tures (Hansen et al., 1997, 2002; Free and An-
gell, 2002; Wigley et al., 2005a), but also water 
vapor (Soden et al., 2002), precipitation (Gillett 
et al., 2004c), atmospheric circulation patterns 

67 This may be related to an asymmetry in the pattern 
of stratospheric ozone depletion: the largest ozone 
decreases over the past two to three decades have 
occurred at high latitudes in the SH.

Figure 5.7: Zonal-mean patterns of atmospheric temperature change in “20CEN” experiments 
performed with four different climate models and in observational radiosonde data. Model re-
sults are for CCSM3.0 (panel A), PCM (panel B), GFDL CM 2.1 (panel C), and GISS-EH (panel D). 
The model experiments are ensemble means. There are differences between the sets of climate 
forcings that the four models used in their 20CEN runs (Table 5.3). Observed changes (panel E) 
were estimated with HadAT2 radiosonde data (Thorne et al., 2005, and Chapter 3). The HadAT2 
temperature data do not extend above 30 hPa, and have inadequate coverage at high latitudes in 
the Southern Hemisphere. All temperature changes were calculated from monthly-mean data and 
are expressed as linear trends (in ºC/decade) over 1979 to 1999. 
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(see, e.g., Robock, 2000, and Ramaswamy et 
al., 2001a; Robock and Oppenheimer, 2003), 
ocean heat content and sea level (Church et al., 
2005), and even global-mean surface pressure 
(Trenberth and Smith, 2005). These responses 
are physically interpretable and internally con-
sistent68. The combined evidence from changes 
in all of these variables makes a stronger case 
for an identifiable volcanic effect on climate 
than evidence from a single variable only.  

A “multi-variable” perspective may also be 
beneficial in understanding the possible causes 
of differential warming. The value of “comple-
mentary” climate data sets for studying this 
specific problem has been recognized by Wentz 
and Schabel (2000) and by Pielke (2004). The 
former found internally consistent increases in 
SST, T2LT, and marine total column water vapor 
over the 12-year period from 1987 to 199869. 
Multi-decadal increases in surface and lower 
tropospheric water vapor were also reported 
in the IPCC Second Assessment Report (Fol-
land et al., 2001).70 More recently, Trenberth 

68 The physical consistency between the temperature 
and water vapor changes after the Pinatubo eruption 
has been clearly demonstrated by Soden et al. (2002). 
The surface and tropospheric cooling induced by Pi-
natubo caused a global-scale reduction in total column 
water vapor. Since water vapor is a strong GHG, the 
reduction in water vapor led to less trapping of out-
going thermal radiation by Earth’s atmosphere, thus 
amplifying the volcanic cooling. This is referred to 
as a “positive feedback.” Soden et al. “disabled” this 
feedback in a climate model experiment, and found 
that the “no water vapor feedback” model was inca-
pable of simulating the observed tropospheric cooling 
after Pinatubo. Inclusion of the water vapor feedback 
yielded close agreement between the simulated and 
observed T2LT responses to Pinatubo. This suggests 
that the model used by Soden et al. captures impor-
tant aspects of the physics linking the real world’s 
temperature and moisture changes.

69 The Wentz and Schabel study used NOAA optimally 
interpolated SST data, a version of the UAH T2LT data 
that had been corrected for orbital decay effects, and 
information on total column water vapor from the 
satellite-based Special Sensor Microwave Imager 
(SSM/I).

70 More specifically, Folland et al. (2001) concluded, 
“Changes in water vapor mixing ratio have been 
analyzed for selected regions using in situ surface 
observations as well as lower-tropospheric measure-
ments based on satellites and weather balloons. A 
pattern of overall surface and lower-tropospheric 
water vapor mixing ratio increases over the past 
few decades is emerging, although there are likely 
to be some time-dependent biases in these data and 
regional variations in trends. The more reliable data 
sets show that it is likely that total atmospheric water 
vapor has increased several percent per decade over 

et al. (2005) found significant increases in 
total column water vapor over the global 
ocean71. At constant relative humidity, water 
vapor increases non-linearly with increasing 
temperature (Hess, 1959). Slow increases in 
tropospheric water vapor therefore provide cir-
cumstantial evidence in support of tropospheric 
warming. However, water vapor measurements 
are affected by many of the same data quality 
and temporal homogeneity problems that influ-
ence temperature measurements (Elliott, 1995; 
Trenberth et al., 2005), so the strength of this 
circumstantial evidence is still questionable72.

Other climate variables also corroborate the 
warming of Earth’s surface over the second half 
of the 20th century. Examples include increases 
in ocean heat content (Levitus et al., 2000, 
2005; Willis et al., 2004), sea-level rise (Ca-
banes et al., 2001), thinning of major ice sheets 
and ice shelves (Krabill et al., 1999; Rignot and 
Thomas, 2002; Domack et al., 2005), and wide-
spread glacial retreat, with accelerated rates 
of glacial retreat over the last several decades 
(Arendt et al., 2002; Paul et al., 2004)73. 

Changes in some of these “complementary” 
variables have been used in detection and 
attribution studies. Much of this work has 
focused on ocean heat content. When driven 

many regions of the Northern Hemisphere since the 
early 1970s. Changes over the Southern Hemisphere 
cannot yet be assessed.”

71 Trenberth et al. (2005) reported an increase in total 
column water vapor over 1988 to 2001 of “1.3 ± 0.3% 
per decade for the ocean as a whole, where the error 
bars are 95% confidence intervals.” This estimate was 
obtained with an updated version of the SSM/I data 
set analyzed by Wentz and Schabel (2000).

72 Note, however, that SSM/I-derived water vapor 
measurements may have some advantages relative 
to temperature measurements obtained from MSU. 
Wentz and Schabel (2000) point out that (under a 
constant relative humidity assumption), the 22 GHz 
water vapor radiance observed by SSM/I is three 
times more sensitive to changes in air temperature 
than the MSU T2 54 GHz radiance. Furthermore, 
while drift in sampling the diurnal cycle influences 
MSU-derived tropospheric temperatures (Chapter 4), 
it has a much smaller impact on SSM/I water vapor 
measurements.

73 Folland et al. (2001) note that “Long-term monitor-
ing of glacier extent provides abundant evidence that 
tropical glaciers are receding at an increasing rate in 
all tropical mountain areas”. Accelerated retreat of 
high-elevation tropical glaciers is occurring within 
the tropical lower tropospheric layer that is a primary 
focus of this report, and provides circumstantial sup-
port for warming of this layer over the satellite era. 

A “multi-variable” 
perspective may 

also be beneficial in 
understanding the 
possible causes of 

differential warming. 
At constant relative 

humidity, water vapor 
increases non-linearly 

with increasing 
temperature.
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by anthropogenic forc-
ing, a number of dif-
ferent CGCMs capture 
the overall increase in 
observed ocean heat 
content estimated by 
Levitus et al. (2000; 
2005), but not the large 
decadal variability in 
heat content (Barnett 
et al., 2001; Levitus et 
al., 2001; Reichert et 
al., 2002; Sun and Han-
sen, 2003; Pielke, 2003; 
Gregory et al., 2004; 
Hansen et al., 2005b)74. 
It is still unclear wheth-
er this discrepancy be-
tween simulated and 
observed variability is 
primarily due to model 
deficiencies or is an ar-
tifact of how Levitus et 

al. (2000; 2005) “infilled” data-sparse ocean 
regions (Gregory et al., 2004; AchutaRao et 
al., 2006).

In summary, the behavior of complementary 
variables enhances our confidence in the reality 
of large-scale warming of the Earth’s surface, 
and tells us that the signature of this warming 
is manifest in many different aspects of the 
climate system. Pattern-based fingerprint de-
tection work performed with ocean heat content 
(Barnett et al., 2001; Reichert et al., 2002; Bar-
nett et al., 2005; Pierce et al., 2006), sea-level 
pressure (Gillett et al., 2003), and tropopause 
height (Santer et al., 2003a, 2004)75 suggests 

74 Model control runs cannot generate such large 
multi-decadal increases in the heat content of the 
global ocean.

75 The tropopause is the transition zone between the 
turbulently-mixed troposphere, where most weather 
occurs, and the more stably-stratified stratosphere (see 
Preface and Chapter 1). Increases in tropopause height 
over the past 3-4 decades represent an integrated 
response to temperature changes above and below 
the tropopause (Highwood et al., 2000; Santer et al., 
2004), and are evident in both radiosonde data (High-
wood et al., 2000; Seidel et al., 2001) and reanalyses 
(Randel et al., 2000). In model 20CEN simulations, 
recent increases in tropopause height are driven by 
the combined effects of GHG-induced tropospheric 
warming and ozone-induced stratospheric cooling 
(Santer et al., 2003a). Available reanalysis products do 
not provide a consistent picture of the relative contri-
butions of stratospheric and tropospheric temperature 

that anthropogenic forcing is necessary in order 
to explain observed changes in these variables. 
This supports the findings of the surface- and 
atmospheric temperature studies described in 
Section 4.4. To date, however, investigations 
of complementary variables have not enabled 
us to narrow uncertainties in satellite- and 
radiosonde-based estimates of tropospheric 
temperature change over the past 2-3 decades. 
Formal detection and attribution studies involv-
ing water vapor changes may be helpful in this 
regard, since observations suggest a recent 
moistening of the troposphere, consistent with 
tropospheric warming.

7. SUMMARy

This chapter has evaluated a wide range of 
scientific literature dealing with the possible 
causes of recent temperature changes, both at 
the Earth’s surface and in the free atmosphere. 
It shows that many factors – both natural and 
human-related – have probably contributed to 
these changes. Quantifying the relative impor-
tance of these different climate forcings is a 
difficult task. Analyses of observations alone 
cannot provide us with definitive answers. This 
is because there are important uncertainties in 
the observations and in the climate forcings 
that have affected them. Although computer 
models of the climate system are useful in 
studying cause-effect relationships, they, too, 
have limitations. Advancing our understanding 
of the causes of recent lapse-rate changes will 
best be achieved by comprehensive compari-
sons of observations, models, and theory – it is 
unlikely to arise from analysis of a single model 
or observational data set.
 

changes to recent tropopause height increases (Pielke 
and Chase, 2004; Santer et al., 2004).


