- JoNova - http://joannenova.com.au -

Magnetic Reconnection – Major space weather effect measured for the first time

Posted By Jo Nova On May 14, 2016 @ 3:19 am In Astronomy,Global Warming | Comments Disabled

The liquid iron flowing in the Earth’s core maybe what drives a magnetic field some 40,000 km to 370,000 km out beyond the Earth. The solar field envelopes that. At the layer where these fields interact sometimes the Sun and Earth’s magnetic field lines do something called  “reconnecting” — suddenly converting magnetic energy into plasma energy in an explosive way. We’ve finally just measured one event properly for the first time. So a 12,000km ball of lava with a thin crust of rocks and 15 km of damp air, floats in a sea of magnetically charged fields. You might think that our slithery-thin layer of humid air and clouds could be affected by the stirring of “yo-yo” like lava flows and magnetic fields that are also twisted by solar dynamos, but you would just be a silly denier. These magnetic explosions and solar winds can’t possibly affect our climate — there’s a 97% consensus that says so.

Luckily we have climate models that are 95% certain we don’t even need to include these factors — especially lucky, since we barely understand them.

This is after-all, just space weather, and it’s not like the Earth is in space, eh?

Supposedly geomagnetic weather just makes nice aurora’s and mucks up some satellites.

NASA Aircraft measure magnetic explosions

Normally, the [Sun and Earth's] magnetic fields oppose each other and move in different directions. But every so often the magnetic field lines switch and connect with each other. That’s called a magnetic reconnection event. “When the two magnetic fields link up, then that allows the solar energy to flow straight into the magnetosphere,” said study author Jim Burch, vice president of the space science and engineering at the Southwest Research Institute. “It sets the entire field in motion.” The excited particles from the Sun stream into the magnetic field lines of Earth, transferring energy into the magnetosphere.

This newer “MMS” program uses four machines flying in a 10km pyramid formation in space and works at a nanosecond level. It’s vastly better than any previous efforts.

A useful 3 minute video from NASA about why this program is important from the researchers point of view and what they are hoping to learn. Some cool graphics. (Sorry it’s so big, but I didn’t want to shrink it).

PRESS RELEASE: Space Mission First to Observe Key Interaction Between Magnetic Fields of Earth and Sun

Most people do not give much thought to the Earth’s magnetic field, yet it is every bit as essential to life as air, water and sunlight. The magnetic field provides an invisible, but crucial, barrier that protects Earth from the sun’s magnetic field, which drives a stream of charged particles known as the solar wind outward from the sun’s outer layers. The interaction between these two magnetic fields can cause explosive storms in the space near Earth, which can knock out satellites and cause problems here on Earth’s surface, despite the protection offered by Earth’s magnetic field.

A new study co-authored by University of Maryland physicists provides the first major results of NASA’s Magnetospheric Multiscale (MMS) mission, including an unprecedented look at the interaction between the magnetic fields of Earth and the sun. The paper describes the first direct and detailed observation of a phenomenon known as magnetic reconnection, which occurs when two opposing magnetic field lines break and reconnect with each other, releasing massive amounts of energy.

The discovery is a major milestone in understanding magnetism and space weather. The research paper appears in the May 13, 2016, issue of the journal Science.

“Imagine two trains traveling toward each other on separate tracks, but the trains are switched to the same track at the last minute,” said James Drake, a professor of physics at UMD and a co-author on the Science study. “Each track represents a magnetic field line from one of the two interacting magnetic fields, while the track switch represents a reconnection event. The resulting crash sends energy out from the reconnection point like a slingshot.”

Evidence suggests that reconnection is a major driving force behind events such as solar flares, coronal mass ejections, magnetic storms, and the auroras observed at both the North and South poles of Earth. Although researchers have tried to study reconnection in the lab and in space for nearly half a century, the MMS mission is the first to directly observe how reconnection happens.

The MMS mission provided more precise observations than ever before. Flying in a pyramid formation at the edge of Earth’s magnetic field with as little as 10 kilometers’ distance between four identical spacecraft, MMS images electrons within the pyramid once every 30 milliseconds. In contrast, MMS’ predecessor, the European Space Agency and NASA’s Cluster II mission, takes measurements once every three seconds—enough time for MMS to make 100 measurements.

“Just looking at the data from MMS is extraordinary. The level of detail allows us to see things that were previously a blur,” explained Drake, who served on the MMS science team and also advised the engineering team on the requirements for MMS instrumentation. “With a time interval of three seconds, seeing reconnection with Cluster II was impossible. But the quality of the MMS data is absolutely inspiring. It’s not clear that there will ever be another mission quite like this one.”

Simply observing reconnection in detail is an important milestone. But a major goal of the MMS mission is to determine how magnetic field lines briefly break, enabling reconnection and energy release to happen. Measuring the behavior of electrons in a reconnection event will enable a more accurate description of how reconnection works; in particular, whether it occurs in a neat and orderly process, or in a turbulent, stormlike swirl of energy and particles.

A clearer picture of the physics of reconnection will also bring us one step closer to understanding space weather–including whether solar flares and magnetic storms follow any sort of predictable pattern like weather here on Earth. Reconnection can also help scientists understand other, more energetic astrophysical phenomena such as magnetars, which are neutron stars with an unusually strong magnetic field.

“Understanding reconnection is relevant to a whole range of scientific questions in solar physics and astrophysics,” said Marc Swisdak, an associate research scientist in UMD’s Institute for Research in Electronics and Applied Physics. Swisdak is not a co-author on the Science paper, but he is actively collaborating with Drake and others on subsequent analyses of the MMS data.

“Reconnection in Earth’s magnetic field is relatively low energy, but we can get a good sense of what is happening if we extrapolate to more energetic systems,” Swisdak added. “The edge of Earth’s magnetic field is an excellent test lab, as it’s just about the only place where we can fly a spacecraft directly through a region where reconnection occurs.”

To date, MMS has focused only on the sun-facing side of Earth’s magnetic field. In the future, the mission is slated to fly to the opposite side to investigate the teardrop-shaped tail of the magnetic field that faces away from the sun.

REFERENCES

Burch et al — 51 other names  (2016) Electron-scale measurements of magnetic reconnection in spaceScience  12 May 2016: DOI: 10.1126/science.aaf2939

VN:F [1.9.22_1171]
Rating: 9.1/10 (47 votes cast)

Article printed from JoNova: http://joannenova.com.au

URL to article: http://joannenova.com.au/2016/05/magnetic-reconnection-major-space-weather-effect-measured-for-the-first-time/

Copyright © 2008 JoNova. All rights reserved.